PHYSICS FORMULAS

Prefix	Symbol	Power of ten	E notation	Decimal form
tera	Т	10 ^ 12	E + 12	1,000,000,000,000
giga	G	10 ^ 9	E + 09	1,000,000,000
mega	М	10 ^ 6	E + 06	1,000,000
kilo	k	10 ^ 3	E + 03	1,000
hecto	h	10^2	E + 02	100
deka	da	10	E + 01	10
deci	d	10 ^ -1	E – 01	0.1
centi	С	10 ^ -2	E – 02	0.01
mili	m	10 ^ -3	E – 03	0.001
micro	μ	10 ^ -6	E 06	0.000001
nano	n	10 ^ -9	E – 09	0.00000001
pico	р	10 ^ -12	E – 12	0.00000000001
femto	f	10 ^ -15	E 15	0.0000000000000000000000000000000000000
atto	а	10 ^ -18	E 18	0.0000000000000000000000000000000000000

SCIENTIFIC NOTATION

KINEMATIC FORMULAS

Magnitude:	$ R = \sqrt{(Rx^2 + Ry^2)}$	
Direction:	$\tan\theta = \frac{Ry}{Rx}$	
	$V_o \theta = (V_0 \cos \theta, V_o \sin \theta)$	
Velocity:	$V_{av} = \left(\frac{d}{t}\right)$: d = distance, t = elapsed time
	$V_{BA} = V_{BE} - V_{AE}$: relative velocity
	$V_{av} = \left(\frac{\Delta X}{\Delta T}\right) = \left(\frac{X-Xo}{T-To}\right)$: Velocity average
	$V = \left(\frac{dx}{dt}\right)$: Instantaneous velocity
Acceleration:	$A_{av} = \left(\frac{v}{t}\right)$: $v = velocity$, $t = elapsed$ time
	$A_{av} = \left(\frac{\Delta v}{\Delta t}\right) = \left(\frac{V-Vo}{T-To}\right)$: Acceleration average
	$A = \left(\frac{dv}{dt}\right)$: Instantaneous acceleration
Constant acceleration:	$x = \frac{1}{2}a_ot^2 + v_ot + x_o \rightarrow $	$\theta = \frac{1}{2}\alpha t^2 + \omega_o t + \theta_o$
	$v = a_o t + v_o \longrightarrow$	$\omega = \alpha t + \omega_o$
	$v^2 - v_o^2 = 2a(\Delta x) \longrightarrow$	$\omega^2 - \omega_0^2 = 2\alpha(\Delta\theta)$

PHYSICS FORMULAS

Newton 2 nd law:	$\sum F = ma \rightarrow \sum T = I\alpha$: F = force , m = mass , a = acceleration				
		: T = torque , I = moment of inertia , α = rotational acceleration				
Work :	$W=F\cdot\Delta x$: w = work , F = force , Δx = distance				
	Wnet = $\int F dx$					
Universal Gravitation:	$F = G \frac{m_1 \cdot m_2}{r^2}$: F = force of attraction , $m_1 \cdot m_2 = product \; of \; masses$				
		G = grav const r = radial distance between 2 masses				
Centripetal Force:	$F = \frac{m \cdot v^2}{r}$: F = centipal force , m = mass , v = velocity , r = radius				
Pendulum:	$T = 2\pi \sqrt{\frac{l}{g}}$: T = period , I = length , g = acceleration of gravity				
Mechanical heat:	$W = J \cdot Q$: W = work , Q = heat , J= mech equiv of heat				
ENERGY RELATIONSHIPS						
Kinetic Energy	$KE = \frac{1}{2}m \cdot v^2$: KE = kinetic energy , m = mass , v = velocity				
Potential Energy	$U=m \cdot g \cdot \Delta y$: U = potential energy , m = mass , g = acceleration of gravity				
Conservation of energy	$\sum E_{in} = \sum E_{out}$: $E_{in} = energy in$, $E_{out} = energy out$				
OPTICAL RELATIONSHIPS						
Wave formula:	$v = f \cdot \lambda$:v = wave speed , f = frequency, wave length				
Images:	$\frac{S_o}{S_i} = \frac{D_o}{D_i}$: So = object size , Si = image size, Do = object				
Focal length:	$\frac{1}{f} = \frac{1}{D_o} + \frac{1}{D_i}$: f = focal length , Do = object $, Di = image distance$				
Snells law:	$n_1\sin\theta_2 = n_2\sin\theta_2$: n1 = refractive index , θ = angle between ray to surface				
ELECTRICTY AND MAGNETISM						
Electric current:	$I = \frac{q}{t}$: $I = current$, $q = charge$, $t = time$				
Coulombs law:	$F = k \frac{q_1 q_2}{d^2}$: F = force , k = columbs constant, q = charge , d = dist				
Capacitance:	$C = \frac{q}{v}$: C = capacitance , V = potential difference , q = charge				
Ohms law:	$E = I \cdot R$: E = emf of source , I = Current , R = resistance				
Induced EMF:	$E = -N \frac{d\Phi}{dt}$: N = number of turns, $\frac{d\Phi}{dt}$ = change in flux				
Induced EMF:	$E = B \cdot L \cdot V$: E = induced emf , I = length , $v = velocity$				
Instantaneous voltage:	$e = E_{max} \sin \theta$: e = instantaneous voltage, $E_{max} = \max voltage$				
Instantaneous current:	$i = I_{max} \sin \theta$: I = instantaneous current , $I_{max} = \max current$				

The Academic Support Center @ Daytona State College (Science 29 Page 2 of 2)