PHYSICS FORMULAS

SCIENTIFIC NOTATION

Prefix	Symbol	Power of ten	E notation	Decimal form
tera	T	$10^{\wedge} 12$	$\mathrm{E}+12$	$1,000,000,000,000$
giga	G	$10^{\wedge} 9$	$\mathrm{E}+09$	$1,000,000,000$
mega	M	$10^{\wedge} 6$	$\mathrm{E}+06$	$1,000,000$
kilo	k	$10^{\wedge} 3$	$\mathrm{E}+03$	1,000
hecto	h	$10^{\wedge} 2$	$\mathrm{E}+02$	100
deka	da	10^{\wedge}	$\mathrm{E}+01$	10
deci	d	$10^{\wedge}-1$	$\mathrm{E}-01$	0.1
centi	c	$10^{\wedge}-2$	$\mathrm{E}-02$	0.01
mili	m	$10^{\wedge}-3$	$\mathrm{E}-03$	0.001
micro	μ	$10^{\wedge}-6$	$\mathrm{E}--06$	0.000001
nano	n	$10^{\wedge}-9$	$\mathrm{E}-09$	0.000000001
pico	p	$10^{\wedge}-12$	$\mathrm{E}-12$	0.000000000001
femto	f	$10^{\wedge}-15$	$\mathrm{E}--15$	0.000000000000001
atto	a	$10^{\wedge}-18$	$\mathrm{E}--18$	0.000000000000000001

KINEMATIC FORMULAS

Magnitude:
$\|\mathrm{R}\|=\sqrt{\left(R x^{2}+R y^{2}\right)}$

Direction:
$\tan \theta=\frac{R y}{R x}$
$V_{o} \theta=\left(V_{0} \cos \theta, V_{o} \sin \theta\right)$
Velocity:

$$
\begin{aligned}
V_{a v} & =\left(\frac{d}{t}\right) \\
V_{B A} & =V_{B E}-V_{A E}
\end{aligned}
$$

$$
V_{a v}=\left(\frac{\Delta X}{\Delta T}\right)=\left(\frac{X-X o}{T-T o}\right) \quad: \text { Velocity average }
$$

$$
V=\left(\frac{d x}{d t}\right) \quad: \text { Instantaneous velocity }
$$

Acceleration:

$$
A_{a v}=\left(\frac{v}{t}\right)
$$

$A_{a v}=\left(\frac{\Delta v}{\Delta t}\right)=\left(\frac{v-V o}{T-T o}\right) \quad:$ Acceleration average
$A=\left(\frac{d v}{d t}\right) \quad:$ Instantaneous acceleration
Constant acceleration:

$$
\begin{array}{lll}
x=\frac{1}{2} a_{o} t^{2}+v_{o} t+x_{o} & \rightarrow & \theta=\frac{1}{2} \alpha t^{2}+\omega_{o} t+\theta_{o} \\
v=a_{o} t+v_{o} & \rightarrow & \omega=\alpha t+\omega_{o} \\
v^{2}-v_{o}^{2}=2 a(\Delta x) & \rightarrow & \omega^{2}-\omega_{o}^{2}=2 \alpha(\Delta \theta)
\end{array}
$$

PHYSICS FORMULAS

Newton $2^{\text {nd }}$ law:	$\sum F=m a \rightarrow \sum T=I \alpha$: $\mathrm{F}=$ force , m= mass, $\mathrm{a}=$ acceleration
		: $\mathrm{T}=$ torque , $\mathrm{I}=$ moment of inertia,$\alpha=$ rotational acceleration
Work :	$W=F \cdot \Delta x$: $\mathrm{w}=$ work, $\mathrm{F}=$ force , $\Delta \mathrm{x}=$ distance
	Wnet $=\int F d x$	
Universal Gravitation:	$F=G \frac{m_{1} \cdot m_{2}}{r^{2}}$: $\mathrm{F}=$ force of attraction,$m_{1} \cdot m_{2}=$ product of masses
		$\mathrm{G}=$ grav const $\quad \mathrm{r}=$ radial distance between 2 masses
Centripetal Force:	$F=\frac{m \cdot v^{2}}{r}$: $\mathrm{F}=$ centipal force, $\mathrm{m}=$ mass, $\mathrm{v}=$ velocity, $\mathrm{r}=$ radius
Pendulum:	$T=2 \pi \sqrt{ } \frac{l}{g}$: $\mathrm{T}=$ period, $\mathrm{I}=$ length, $\mathrm{g}=$ acceleration of gravity
Mechanical heat:	$W=J \cdot Q$: W = work, $\mathrm{Q}=$ heat, $\mathrm{J}=$ mech equiv of heat

ENERGY RELATIONSHIPS

Kinetic Energy	$K E=\frac{1}{2} m \cdot v^{2}$	$: K E=$ kinetic energy $, \mathrm{m}=\mathrm{mass}, \mathrm{v}=$ velocity
Potential Energy	$U=m \cdot g \cdot \Delta y$	$: \mathrm{U}=$ potential energy $, \mathrm{m}=\mathrm{mass}, \mathrm{g}=$ acceleration of gravity
Conservation of energy	$\sum E_{\text {in }}=\sum E_{\text {out }}$	$: E_{\text {in }}=$ energy in,$E_{\text {out }}=$ energy out

OPTICAL RELATIONSHIPS

Wave formula:	$v=f \cdot \lambda$	$\mathrm{lv}=$ wave speed, $\mathrm{f}=$ frequency, wave length
Images:	$\frac{S_{o}}{S_{i}}=\frac{D_{o}}{D_{i}}$: So = object size , Si = image size, Do = object
Focal length:	$\frac{1}{f}=\frac{1}{D_{o}}+\frac{1}{D_{i}}$: $f=$ focal length , Do =object , Di $=$ image distance
Snells law:	$n_{1} \sin \theta_{2}=n_{2} \sin \theta_{2}$: $\mathrm{n} 1=$ refractive index, $\theta=$ angle between ray to surface
ELECTRICTY AND MAGNETISM		
Electric current:	$I=\frac{q}{t}$: $l=$ current,$q=$ charge,$t=$ time
Coulombs law:	$F=k \frac{q_{1} q_{2}}{d^{2}}$: $\mathrm{F}=$ force , $\mathrm{k}=$ columbs constant, $\mathrm{q}=$ charge, $\mathrm{d}=$ dist
Capacitance:	$C=\frac{q}{v}$: $\mathrm{C}=$ capacitance , $\mathrm{V}=$ potential difference , $\mathrm{q}=$ charge
Ohms law:	$E=I \cdot R$	E = emf of source , $I=$ Current , $\mathrm{R}=$ resistance
Induced EMF:	$E=-N \frac{d \phi}{d t}$: $\mathrm{N}=$ number of turns, $\frac{d \Phi}{d t}=$ change in flux
Induced EMF:	$E=B \cdot L \cdot V$: $\mathrm{E}=$ induced emf,$I=$ length, $\mathrm{v}=$ velocity
Instantaneous voltage:	$e=E_{\text {max }} \sin \theta$: $\mathrm{e}=$ instantaneous voltage, $E_{\text {max }}=$ max voltage
Instantaneous current:	$i=I_{\text {max }} \sin \theta$: $I=$ instantaneous current, $I_{\text {max }}=$ max current

