SUMMARY OF ORGANIC CHEMISTRY REACTIONS

$\underset{\text { Rxn }}{\text { \# }}$	FUNCTIONAL GROUP NAME and STRUCTURE	$\begin{aligned} & \text { REACTION } \\ & \text { TYPE } \end{aligned}$	CONDITIONS	PRODUCT(S)	COMMENTS	EXAMPLE
1 2 3 4 4 5	All that contain C, H, O Hydrocarbons, $\mathrm{RCH}_{2} \mathrm{CH}_{3}$ Alcohols, $\mathrm{RCH}_{2} \mathrm{OH}$ aldehydes, ketones, $\mathrm{R}_{1} \mathrm{C}(\mathrm{O}) \mathrm{R}_{2}$ esters, carboxylic acids $\mathrm{R}_{1} \mathrm{CO}_{2} \mathrm{R}_{2}$	Combustion	Oxygen $\left(\mathrm{O}_{2}\right)$ is always a reactant. Initiated by heat $=\Delta$ (including this symbol is optional)	$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$	Must balance these equations. Use molecular formula in equation. Aldehydes/ketones are constitutional isomers Carboxylic acids/ esters are constitutional isomers	$\begin{aligned} & 2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \xrightarrow{\Delta} 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & 2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+4 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\ & 2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}+7 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
6	Alkenes $\mathrm{RCH}=\mathrm{CH}_{2}$	Addition	$\mathrm{H}_{2} \mathrm{O}$ in acid $\left(\mathrm{H}^{+}\right)$	$1^{\circ}, 2^{\circ}$ or 3° alcohol	Hydration reaction follows Markovnikoff's Rule - rich get richer Reverse of dehydration of alcohol reaction (Rxn \# 10)	
7			H_{2}	alkane	Hydrogenation reaction	$\mathrm{CH}_{2}=\mathrm{CH}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}$
8			$\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$	Alkyl halide	Hydrohalogenation reaction follows Markovnikoff's Rule	
9			$\mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}$	Alkyl di-halide	Halogenation reaction	

SUMMARY OF ORGANIC CHEMISTRY REACTIONS (continued)

$\begin{gathered} \text { Rxn } \\ \# \end{gathered}$	FUNCTIONAL GROUP NAME and STRUCTURE	REACTION TYPE	CONDITIONS	PRODUCT(S)	COMMENTS	EXAMPLE
10	Alcohols - hydroxy $1^{\circ} \mathrm{RCH}_{2} \mathrm{OH}$ $2^{\circ} \mathrm{RCHOHCH}_{3}$ $3^{\mathrm{o}} \mathrm{RC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}$	Elimination , dehydration loss of $\mathrm{H}_{2} \mathrm{O}$	Acid catalyzed $\left(\mathrm{H}^{+}\right)$with heat. There must be a H on an adjacent C otherwise NoReaction	Most substituted alkene	Saytseff's rule - poor get poorer	
11 12 13		Oxidation	[O] conditions. Some oxidizing agents $=$ $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{CrO}_{4}, \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	1° give aldehydes first, then carboxylic acids 2° give ketones 3° No Reaction	Reverse of reduction of aldehyde or ketone reaction ($\mathrm{Rx} \# 15$) \qquad	
14 15	Aldehyde	Oxidation	[O] conditions. Some oxidizing agents $=$ $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{CrO}_{4}, \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ Tollens (Ag^{+}) NAD^{+}(biological)	Aldehydes give carboxylic acids Ketones \rightarrow No reaction	Only aldehydes are oxidized	

SUMMARY OF ORGANIC CHEMISTRY REACTIONS (continued)

$\underset{\#}{\operatorname{Rxn}}$	FUNCTIONAL GROUP NAME and STRUCTURE	REACTION TYPE	CONDITIONS	PRODUCT(S)	COMMENTS	EXAMPLE
16	Carboxylic acid	Neutralization	Reaction with any base. Usually OH^{-}or any amine $\left(1^{\circ}, 2^{0}, 3^{0}\right)$	Carboxylic acid + inorganic base gives carboxylate ion Carboxylic acid + amine gives carboxylate ion + ammonium ion	Same as amine neutralization reaction above (Rxn \#18)	
17		Combination esterification	Reaction of any carboxylic acid with any alcohol, catalyzed by acid and heated	ester	Catalyzed by acid. Anhydride + alcohol gives ester product without acid catalysis	
18		Combination amide product	Acid + amine + heat.	Reaction with 1° gives a 2° amide. Reaction with 2° amine gives 3° amide Reaction with 3° amine does not give amide, only neutralization product.	Same reaction as amide formation reaction already described in amines (Rxn \# 21-24, below)	
19		Hydrolysis	Ester + acid or base + heat Reverse of esterification reaction	Acid catalysis \rightarrow carboxylic acid + alcohol Base catalysis \rightarrow carboxylate ion + alcohol	Reverse of ester forming reaction (Rxn \# 17, above)	

SUMMARY OF ORGANIC CHEMISTRY REACTIONS (continued)

$\begin{gathered} \text { Rxn } \\ \# \end{gathered}$	FUNCTIONAL GROUP NAME and STRUCTURE	REACTION TYPE	CONDITIONS	PRODUCT(S)	COMMENTS	EXAMPLE
20	Amines RNH_{2} 1° amine $\mathrm{R}_{2} \mathrm{NH}$ 2° amine $\mathrm{R}_{3} \mathrm{~N}$ 3° amine	Neutralization.	Reaction with any acid: inorganic or organic	Ammonium ion + anion (carboxylate if acid is carboxylic acid)	Rxn with inorganic acid Rxn with organic acid	$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{Cl}^{-}$
21 22 23 24		Combination amide formation (Like Rxn \# 18 above)	Reaction with carboxylic acid Requires heat. Otherwise only neutralization occurs	Ammonia + carboxylic acid gives primary amide Reaction with 1° amine gives a 2° amide. Reaction with 2° amine gives 3° amide (rxn not shown) Reaction with 3° amine does not give amide, only neutralization products.		
25		Hydrolysis	Acid or base catalzyed	Acid catalysis \rightarrow carboxylic acid + ammonium ion Base catalysis \rightarrow carboxylate ion + amine	Reverse of amide forming reaction (Rxn \# 18 and 2124 above)	

