SUMMARY OF ORGANIC CHEMISTRY REACTIONS

Rxn #	FUNCTIONAL GROUP NAME and STRUCTURE	REACTION TYPE	CONDITIONS	PRODUCT(S)	COMMENTS	EXAMPLE
1 2 3 4	All that contain C, H, O Hydrocarbons, RCH ₂ CH ₃ Alcohols, RCH ₂ OH aldehydes, ketones, R ₁ C(O)R ₂ esters, carboxylic acids R ₁ CO ₂ R ₂	Combustion	Oxygen (O ₂) is always a reactant. Initiated by heat = Δ (including this symbol is optional)	CO ₂ + H ₂ O	Must balance these equations. Use molecular formula in equation. Aldehydes/ketones are constitutional isomers Carboxylic acids/ esters are constitutional isomers	$ \begin{array}{c} \Delta \\ 2C_{2}H_{6} + 7O_{2} \rightarrow 4CO_{2} + 6H_{2}O \\ C_{2}H_{4} + 3O_{2} \rightarrow 2CO_{2} + 2H_{2}O \\ 2CH_{3}OH + 3O_{2} \rightarrow 2CO_{2} + 4H_{2}O \\ C_{3}H_{6}O + 4O_{2} \rightarrow 3CO_{2} + 3H_{2}O \\ 2C_{3}H_{6}O_{2} + 7O_{2} \rightarrow 6CO_{2} + 6H_{2}O \end{array} $
6	Alkenes RCH=CH ₂	Addition	H ₂ O in acid (H ⁺)	1°, 2° or 3° alcohol	Hydration reaction follows Markovnikoff's Rule – rich get richer Reverse of dehydration of alcohol reaction (Rxn # 10)	$\begin{array}{ccc} & & \text{OH} \\ & \text{H}^+ & \\ \text{H-C=CH}_2 + \text{H}_2\text{O} & \rightarrow & \text{H-C-CH}_3 \\ & & \\ \text{CH}_3 & & \text{CH}_3 \end{array}$
7 8			HCl , HBr, HI	alkane Alkyl halide	Hydrogenation reaction Hydrohalogenation reaction follows Markovnikoff's Rule	$CH_2=CH_2 \rightarrow CH_3CH_3$ Br $ $ $H-C=CH_2 + HBr \rightarrow H-C-CH_3$ $ $ $CH_3 \qquad CH_3$
9			Cl ₂ , Br ₂ , I ₂	Alkyl di-halide	Halogenation reaction	$\begin{array}{ccc} & & \text{Br Br} \\ & & \\ \text{H-C=CH}_2 + \text{Br}_2 & \rightarrow & \text{H-C-CH}_2 \\ & & \\ \text{CH}_3 & & \text{CH}_3 \end{array}$

SUMMARY OF ORGANIC CHEMISTRY REACTIONS (continued)

Rxn #	FUNCTIONAL GROUP NAME and STRUCTURE	REACTION TYPE	CONDITIONS	PRODUCT(S)	COMMENTS	EXAMPLE
10	Alcohols – hydroxy 1° RCH ₂ OH 2° RCHOHCH ₃ 3° RC(CH ₃) ₂ OH	Elimination , dehydration – loss of H ₂ O	Acid catalyzed (H ⁺) with heat. There must be a H on an adjacent C otherwise NoReaction	Most substituted alkene	Saytseff's rule – poor get poorer	$ \begin{array}{c} OH \\ H^{+} \\ CH_{3}\text{-}CH_{2}\text{-}C\text{-}CH_{3} \rightarrow CH_{3}\text{-}CH=C\text{-}CH_{3} + H_{2}O \\ CH_{3} $
11 12 13		Oxidation	[O] conditions. Some oxidizing agents = CrO ₃ , H ₂ CrO ₄ , K ₂ Cr ₂ O ₇	1° give aldehydes first, then carboxylic acids 2° give ketones 3° No Reaction	Reverse of reduction of aldehyde or ketone reaction (Rx # 15)	OH O O [O] [O] CH ₃ -CH ₂ → CH ₃ -CH → CH ₃ -COH OH O [O] CH ₃ -CH ₂ -CH-CH ₃ → CH ₃ -CH ₂ -C-CH ₃ OH [O] CH ₃ -C-CH ₃ → NR CH ₃
14	Aldehyde R-C=O H Ketone R ₁ -C=O R ₂	Oxidation	[O] conditions. Some oxidizing agents = CrO ₃ , H ₂ CrO ₄ , K ₂ Cr ₂ O ₇ Tollens (Ag ⁺) NAD ⁺ (biological)	Aldehydes give carboxylic acids Ketones → No reaction —	Only aldehydes are oxidized	O O $\parallel [O] \parallel$ $CH_3\text{-}CH \rightarrow CH_3\text{-}COH$ O $\parallel [O]$ $CH_3\text{-}CH_2\text{-}C\text{-}CH_3 \rightarrow NR$

SUMMARY OF ORGANIC CHEMISTRY REACTIONS (continued)

Rxn #	FUNCTIONAL GROUP NAME and STRUCTURE	REACTION TYPE	CONDITIONS	PRODUCT(S)	COMMENTS	EXAMPLE
16	Carboxylic acid R-C=O OH	Neutralization	Reaction with any base. Usually OH ⁻ or any amine (1°, 2°, 3°)	Carboxylic acid + inorganic base gives carboxylate ion Carboxylic acid + amine gives carboxylate ion + ammonium ion	Same as amine neutralization reaction above (Rxn #18)	O O $\ \ $ $\ \ $ $\ \ $ $\ \ $ $\ \ $ $CH_3\text{-COH} + NaOH \rightarrow CH_3\text{-CO}^- + Na^+ + H_2O O O \ \ \ \ \ CH_3\text{-COH} + (CH_3)_3N \rightarrow CH_3\text{-CO}^- + (CH_3)_3NH^+$
17		Combination - esterification	Reaction of any carboxylic acid with any alcohol, catalyzed by acid and heated	ester	Catalyzed by acid. Anhydride + alcohol gives ester product without acid catalysis	O O H ⁺ CH ₃ OH + CH ₃ -COH → CH ₃ -COCH ₃ + H ₂ O O O O O H-C-O-C-H + CH ₃ -OH → H-COH + CH ₃ -O-C-H ester
18		Combination – amide product	Acid + amine + heat.	Reaction with 1° gives a 2° amide. Reaction with 2° amine gives 3° amide Reaction with 3° amine does not give amide, only neutralization product.	Same reaction as amide formation reaction already described in amines (Rxn # 21-24, below)	$\begin{array}{cccc} O & O \\ \parallel & \Delta & \parallel \\ CH_3NH_2 + CH_3\text{-}COH CH_3\text{-}CNHCH_3 + H_2O \\ & O & O \\ \parallel & \Delta & \parallel \\ (CH_3)_3N + CH_3\text{-}COH CH_3\text{-}CO^- + (CH_3)_3NH^+ \\ & & \text{not an amide}^+ \end{array}$
19	Ester R ₁ -C=O OR ₂	Hydrolysis	Ester + acid or base + heat Reverse of esterification reaction	Acid catalysis→carboxylic acid + alcohol Base catalysis→ carboxylate ion + alcohol	Reverse of ester forming reaction (Rxn # 17, above)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

SUMMARY OF ORGANIC CHEMISTRY REACTIONS (continued)

Rxn #	FUNCTIONAL GROUP NAME and STRUCTURE	REACTION TYPE	CONDITIONS	PRODUCT(S)	COMMENTS	EXAMPLE
20	Amines RNH ₂ 1° amine R ₂ NH 2° amine R ₃ N 3° amine	Neutralization.	Reaction with any acid: inorganic or organic	Ammonium ion + anion (carboxylate if acid is carboxylic acid)	Rxn with inorganic acid Rxn with organic acid	$CH_3NH_2 + HCl \rightarrow CH_3NH_3^+ + Cl^-$ $O \qquad O$ $\parallel \qquad \parallel$ $CH_3NH_2 + CH_3-COH \rightarrow CH_3NH_3^+ + CH_3-CO^-$
21		Combination – amide formation	Reaction with carboxylic acid Requires heat. Otherwise only neutralization occurs	Ammonia + carboxylic acid gives primary amide	-	$\begin{array}{c cccc} O & O \\ \parallel & \Delta & \parallel \\ NH_3 + CH_3\text{-}COH \xrightarrow{\bullet} CH_3\text{-}CNH_2 + H_2O \end{array}$
22		(Like Rxn # 18 above)	neutranzation occurs	Reaction with 1° amine gives a 2° amide.	-	$\begin{array}{ccc} & O & O \\ \parallel & \Delta & \parallel \\ \text{CH}_3\text{NH}_2 + & \text{CH}_3\text{-COH} \rightarrow & \text{CH}_3\text{-CNHCH}_3 + \text{H}_2\text{O} \end{array}$
23				Reaction with 2° amine gives 3° amide (rxn not shown)		0 0
24				Reaction with 3° amine does not give amide, only neutralization products.	-	$ \begin{array}{c cccc} & & & & & & & \\ (CH_3)_3N & + & CH_3\text{-}COH & \rightarrow & CH_3\text{-}CO^- + (CH_3)_3NH^+ \\ & & \text{not an amide}^+ \end{array} $
25	Amides R-C=O NH ₂	Hydrolysis	Acid or base catalzyed	Acid catalysis carboxylic acid + ammonium ion Base catalysis carboxylate ion + amine	Reverse of amide forming reaction (Rxn # 18 and 21- 24 above)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$