Electronegativity

For our purposes use the definitions in the chart. The most polar bond determines the polarity of a molecule (i.e. if a compound contains one non-polar, and one polar bond the molecule, as a whole, is considered to be polar)

% ionic character	ΔEN	polarity
0 – 10	0 - 0.5	non-polar
10 - 50	0.5 - 1.7	polar (covalent)
50 – 100	1.7 +	ionic

Α	В	С	D	E	F	G
Molecule	Lewis structure	Draw shape. Indicate bond dipoles	ΔEN of bonds	Polarity of bonds (ignore shape)	Symmetrical molecule? (i.e. all pulls cancel out)	Polarity of molecule
1. NH ₃	H=N=H H		3.1 – 2.1 = 1.0	polar	No	polar
2. N ₂	IN≣NI	•				
3. HBr	H − Br∎	H Br				
4. OCl ₂						
5. SF ₆	E // E	**				
6. SO ₂	(ōᢩ ^{¸ṣ} ¸°¸) ``(ऺॣ°¸ ^ṣ ¸oై)	.0				
7. SiCl ₄	0 % 0	**				
8. CF ₂ Cl ₂	E C CI	**	C-F: C-Cl:			
9. XeF ₄ Note: the EN for Xe is 2.6						
10.C₂H₄	H C ■ C H	>	C-C: C-H:		_	

Q - which binary (two element) compound would have the greatest ΔEN?

Electronegativity

For our purposes use the definitions in the chart. The most polar bond determines the polarity of a molecule (i.e. if a compound contains one non-polar, and one polar bond the molecule, as a whole, is considered to be polar)

% ionic character	ΔEN	polarity
0 – 10	0 - 0.5	non-polar
10 – 50	0.5 - 1.7	polar (covalent)
50 – 100	1.7 +	ionic

Α	В	С	D	Е	F	G
Molecule	Lewis structure	Draw shape. Indicate bond dipoles	ΔEN of bonds	Polarity of bonds (ignore shape)	Symmetrical molecule?	Polarity of molecule
1. NH₃	H=N=H H	-	3.1 – 2.1 = 1.0	polar	No	polar
2. N ₂	IN≣NI	No dipole	3.1 – 3.1 = 0	non-polar	Yes	non-polar
3. HBr	H-Bri	H Br	2.8 – 2.1 = 0.7	polar	No	polar
4. OCl ₂	ıcı-o-cı		3.5 – 2.9 = 0.6	polar	No	polar
5. SF ₆	F	All away from centre	4.1 – 2.4 = 1.7	polar / ionic	Yes	non-polar
6. SO ₂	(@^ ^{\$} •°) ``\(`O* ^{\$} -@i)	18	3.5 – 2.4 = 1.1	polar	No	polar
7. SiCl ₄	CI-SI-CII CI	All away from centre	2.9 – 1.8 = 1.1	polar	Yes	non-polar
8. CF ₂ Cl ₂	E C CI	All away from centre	C-F: 4.1 – 2.5 = 1.6 C-Cl: 2.9 – 2.5 =0.4	polar non-polar	NO (yes if you think just about shape, but no because CI and F are different)	polar
9. XeF ₄	FX4 F	All away from centre	(4.1 – 2.6 = 1.5)	(polar)	Yes	non-polar
10. C₂H₄	H C■C H	(small dipoles)	C-C: 2.5 – 2.5 = 0 C-H: 2.5 – 2.1 =0.4	non-polar non-polar	Yes	non-polar

Q1 – which binary (two element) compound would have the greatest ΔEN? FrF - ΔEN = 4.1 - 0.9 = 3.2 (ionic)