

GENERAL BIOLOGY II LAB PRACTICAL I

REVIEW

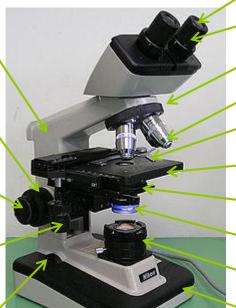
ı

Microscopes

Important Terms

- Eyepiece
- Ocular Lens Magnifies object by 10x
- Nosepiece
- Objective Lenses 4x, 10x, 40x, and 100x, Parfocal and Parcentral
- Specimen Holder
- Stage
- Iris Diaphragm Adjustment Lever
- Condenser Focuses light
- Light
- Rheostat Adjusts brightness of light
- Base
- Coarse Adjustment Knob
- Fine Adjustment Knob
- Axial Adjustment Knob
- Arm
- Magnification How much an object is magnified, i.e. 10x
- Resolving Power How clear an object remains after magnification
- Contrast How well objects show up against their background

Microscopes


Arm

Coarse Adjustment Knob

Fine Adjustment Knob

Axial Adjustment Knob

Rheostat

Ocular Lens

Eyepiece

Nosepiece

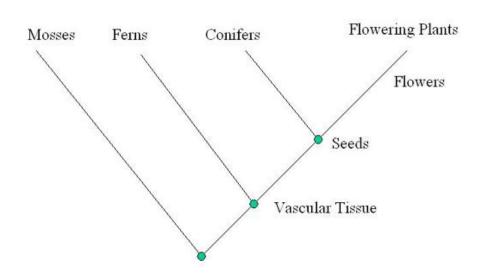
Objective Lens

Specimen Holder

Stage

Iris Diaphragm Adjustment Lever

Condenser

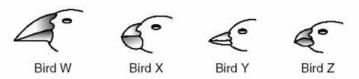

Light

Base

Taxonomy

- Domain, Kingdom, Phylum, Class, Order, Family, Genus, Species
- Mnemonics to help you remember:
 - Dear King Phillip Came Over From Greece Saturday
 - Do Keep Piling Chocolate On For Goodness Sake
- 3 Domains
 - Archaea, Bacteria, Eukarya
- 4 Kingdoms in Eukarya
 - o Protista, Plantae, Fungi, Animalia

Taxonomy - Cladogram


Cladogram

- a visual depiction, based on morphology or DNA evidence, that shows the relation of different organisms
- Each point of divergence is a node, and each branch shows a different clade.

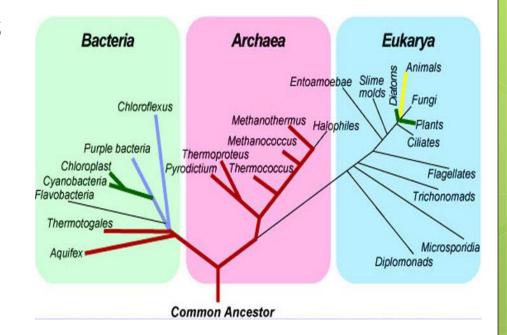
Taxonomy – Dichotomous Key

- Dichotomous Key
 - A series of either or choices used to identify organisms based on morphological characteristics

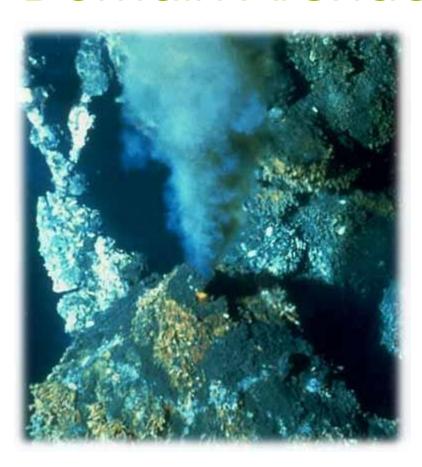
Example 1

Dichotomous Key to Representative Birds

1. a. The beak is relatively long and slender	Certhidea
b. The beak is relatively stout and heavy	go to 2
2. a. The bottom surface of the lower beak is flat and straight	Geospiza
b. The bottom surface of the lower beak is curved	go to 3
3. a. The lower edge of the upper beak has a distinct bend	Camarhynchus
b. The lower edge of the upper beak is mostly flat	


Example 2

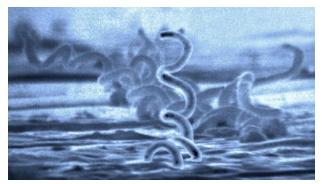
Key to Writing Implements


1. Writes with ink	go to 2
1. Writes with graphite	go to 4
2. Writing tip is metal	go to 3
2. Writing tip is felt	marker
3. Writing tip contains a ball	ball point pen
3. Writing tip does not contain a ba	llcalligraphy pen
4. Body is made of wood	regular pencil
4. Body is not made of wood	mechanical

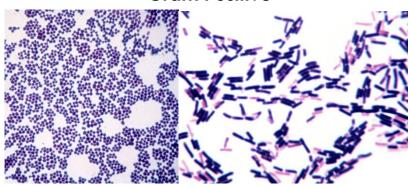
Domains

- There are 3 domains
 - Archaea
 - Unicellular prokaryotic cells, extremophiles
 - Bacteria
 - Unicellular prokaryotic cells
 - Eukarya
 - Uni- and multicellular eukaryotic cells

Domain Archaea

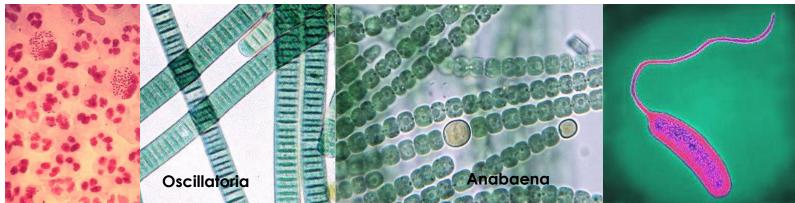


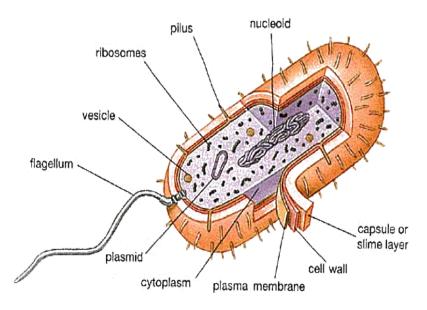
- Archaeans are extremophiles.
 - They live in very harsh environments such as salt lakes and hydrothermal vents.


Domain Bacteria

Bacteria are prokaryotic cells, lacking a nucleus and membrane-bound organelles. They are able to gain new genetic information via transduction, transformation, and conjugation

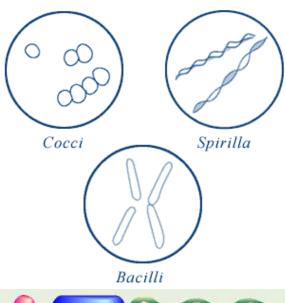
Spirochaete

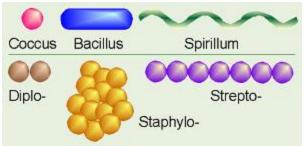

Gram Positive


Chlamydia

Cyanobacteria

Proteobacteria


Bacteria



- Cell Wall
 - provides structural support and some protection
- Capsule or Slime layer
 - Provides protection from phagocytosis and other environmental hazards, not all bacteria have this

- Nucleoid
 - A congregation of DNA in the general center of the cell. NOT a nucleus.
- Pilus
 - Assists in bacterial conjugation, allows two bacteria to attach to exchange genetic information
- Ribosome
 - makes protein
- Vesicle
 - small package made from pieces of membrane
- Flagellum
 - whip-like apparatus used for bacterial movement
- Plasmid
 - small circular piece of DNA
- Cytoplasm
 - liquid part of a cell
- Plasma Membrane
 - holds the cell together, separates the inside of the cell from the environment

Bacteria

Cell Shapes

- Cocci
 - Round Bacteria
- Bacilli
 - Rod-Shaped Bacteria
- Spirilla
 - Spiral Bacteria

Types of Bacteria

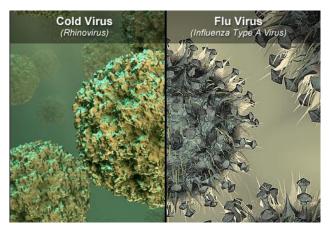
- Chlamydia
- Cyanobacteria
 - Autotrophic, also called blue-green algae
- Gram Positive
 - Test positive (purple) in a Gram Stain
- Proteobacteria
 - Alpha, beta, and gamma
- Spirochaete
 - Spiral-shaped

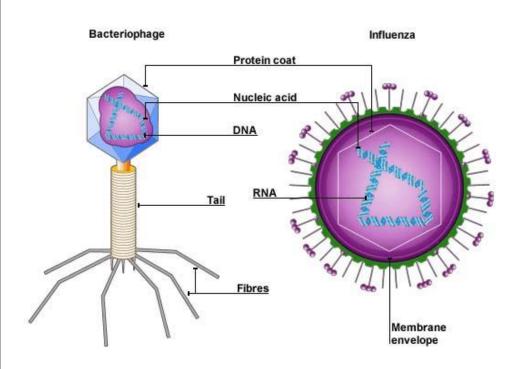
Bacteria Diseases Caused by Bacteria

Organism	Disease
Mycobacterium tuberculosis	Tuberculosis
Mycobacterium leprae	Leprosy
Neisseria gonorrhoeae	Gonorrhea
Neisseria meningitidis	Meningitis
Pseudomonas aeruginosa	Lung and Bladder Infections
Staphylococcus aureus	Pimples, Boils, Toxic Shock Syndrome, MRSA
Streptococcus pyogenes	Strep Throat
Corynebacterium diphtheriae	Diphtheria
Bacillus anthracis	Anthrax
Salmonella typhii	Typhoid Fever
Shigella spp.	Bacterial Dysentery
Escherichia coli	Gastointestinal Problems
Legionella pneumophilia	Legionnaire's Disease
Vibrio cholerae	Cholera
Vibrio vulnifous	Flesh-Eating, Intestinal Problems

Bacteria Diseases Continued

Organism	Disease
Yersinia pestis	Bubonic Plague
Haemophilius influenzae	Meningitis, Pinkeye, Otitis Media
Chlamidia trachomatis	Chlamydia
Clostridium perfringens	Gangrene
Clostridium tetani	Tetanus
Clostridium botulinum	Botulism
Helicobacter pylori	Ulcers
Leptospira interrogans	Leptospirosis
Treponema pallidum	Syphilis
Borrelia burgdorferi	Lyme Disease
Mycoplasma pneumoniae	Atypical Pneumonia
Riokettsia riokettsii	Rocky Mountain Spotted Fever
Riokettsia prowazekii	Epidemic Typhus


Viruses



- Viruses are:
 - o not cells
 - o not technically alive
 - made up of some genetic material, either DNA or RNA
 - encased in a membrane or protein capsule of some kind.

Viruses

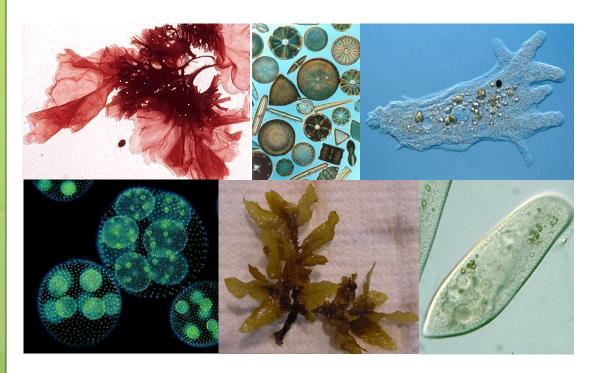
Protein Coat

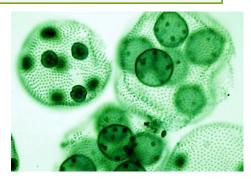
- also called a capsid, this protects the genetic material in all viruses
- Nucleic Acid
 - genetic material, either DNA or RNA, present in all viruses
- Membrane Envelope
 - present in some, but not all, viruses. Covers protein coat.
- Tail
 - In bacteriophages, allows virus to inject DNA into bacterial cell

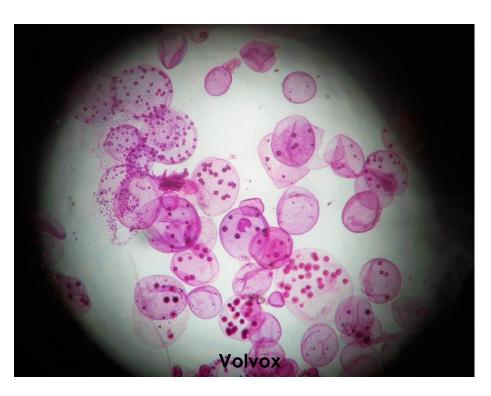
VITUSES Types of Viruses and Examples

Type of Virus	Subtype	Name	Disease
dsDNA	Naked	Adenovirus	Viral Pneumonia, Conjunctivitus
		Papovirus	Warts, Human Papillomavirus
	Enveloped	Herpesvirus	Herpes Simplex Type I and II, Mononucleosis, Epstein-Barr, Shingles
		Poxvirus	Smallpox, Monkeypox
ssDNA	Naked	Inovirus	M13 Bacteriophage
		Parovirus	Parvo in Canines, Feline Panleukopenia
dsRNA	Naked	Cystovirus	Ph16 Bacteriophage
		Reovirus	Rotavirus, Bluetongue in Sheep, Colorado Tick Fever
ssRNA	Naked	Bunyavirus	Hantavirus, Crimean Congo Hemorrhagic Fever
		Calcivirus	Norwalk, Feline Herpes
		Picornavirus	Polio, Hepatitis A, Chronic Fatigue Syndrome, Common cold (Rhinovirus)
	Enveloped	Coronavirus	SARS, Canine Coronavirus
		Flavivirus	Yellow Fever, West Nile, Hepatitis C
		Filovirus	Ebola, Marburg, Reston
		Orthomyxovirus	Influenza Virus, Thogovirus
		Paramyxovirus	Mumps, Measles, Newcastle's Disease, Canine Distemper
		Rhabdovirus	Rabies, Lettuce Necrotic Yellow Virus
		Retrovirus	HIV, SIV, FIV, Mouse Mammary Tumor Virus, Chimpanzee Foamy Virus
		Togavirus	Rubella, Eastern Equine Encephalitis, O'nyong'nyong virus

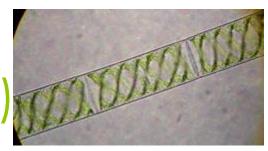
Domain Eukarya


 All Eukaryotes have a nucleus and membrane-bound organelles. They can be unicellular, colonial, or multicellular organisms.




Kingdom Protista

Protista is one of the most diverse kingdoms of Eukarya, containing both unicellular and colonial organisms of all different shapes, sizes, colors, and complexities.


Phylum Chlorophyta

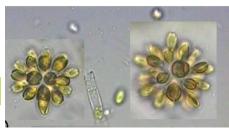
- Green Algae
- Photosynthetic
- Unicellular or Multicellular Colonial
- Motile and Nonmotile
- Ancestors of Modern Plants
- Found in freshwater and marine environments, as well as some terrestrial habitats
- Sexual and Asexual Reproduction

Phylum Charophyta (Advanced Chlorophyta)

- Green Algae (Pond Scum)
- Photosynthetic
- Found in Freshwater
- Nonmotile
- Have Spiral or Complicated Chloroplasts
- More complex form of Chlorophyta
- Closer Ancestor of modern plants
- Sexual and Asexual Reproduction

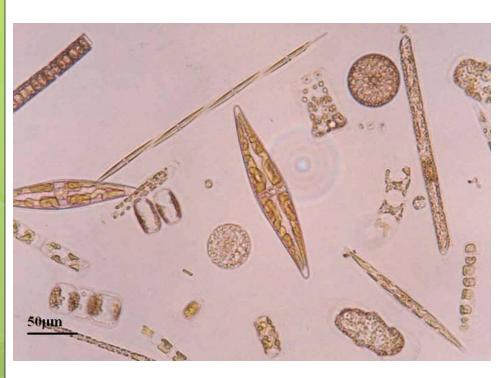
Phylum Rhodophyta

- Red Algae
- Photosynthetic
- Vary in color from red to brown to white depending on concentration and type of accessory photosynthetic pigments (phycobilin)
- Multicellular
- Nonmotile
- Used in production of Agar
- Found in Marine Environments
- Sexual and Asexual Reproduction

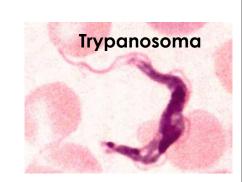

Phylum Phaeophyta

- Brown Algae (Kelps) seaweed
- Photosynthetic
- Nonmotile
- Found in cold marine environments
- Ranges from Dark Green to Brown to Gold depending on concentration of accessory pigments (fucoxanthin)
- Multicellular
- Have holdfasts (not roots, but similar function), stipes (similar to stems), and blades (similar to leaves)
- Sexual and Asexual Reproduction

Phylum Chrysophyta

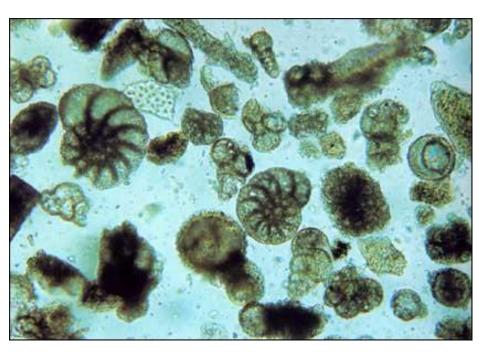


- Golden Algae
- Unicellular
- Motile
- Photosynthetic, though most are facultatively heterotrophic and a very few do no photosynthesis
- Planktonic
- Cell walls containing silicon
- Cells contain oil droplets that serve as food reserves
- Sexual Reproduction


Phylum Baccilariophyta

- Diatoms
- Have a shell (test) made of two halves and composed of silica
- Found in both marine and freshwater environments
- Make up diatomaceous earth
- Come in multiple shapes, sizes and colors
- Asexual Reproduction

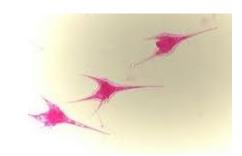
Phylum Euglenophyta (Phytomastigophora and Zoomastigophora)



- Euglena (phytomastigophora)
- Trypanosoma (zoomastigophora)
- Unicellular
- Flagellated
- Some photosynthetic (phyto), some not (zoo)
- Some parasitic, pathogenic (trypanosoma)
- Asexual Reproduction

Phylum Foraminifera

- Foraminiferans
- Amoeboid
- Motile
- Unicellular
- Non photosynthetic
- Have a shell made of calcium carbonate
- Aquatic and Marine
- Asexual Reproduction

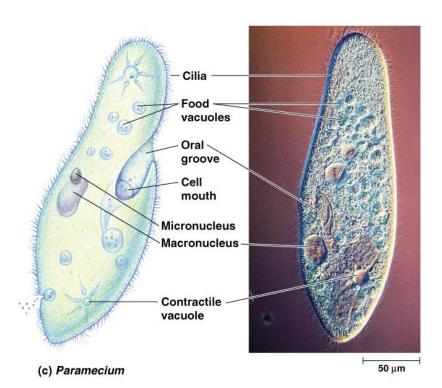

Phylum Actinopoda (Radiolaria)

- Radiolarians
- Endoskeleton made of silicon dioxide arranged in radial, symmetric, geometric shapes
- Unicellular
- Motile
- Stiff pseudopods
- Asexual Reproduction

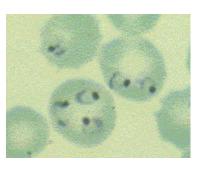
Phylum Pyrrophyta (Dinoflagellata)

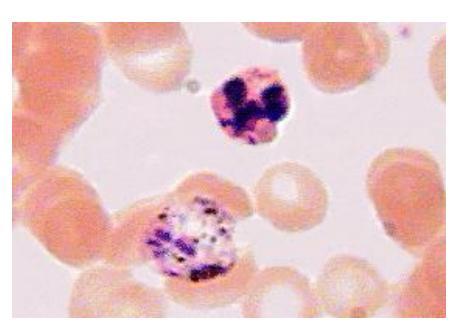
- Dinoflagellates
- Have two flagella, one long and one wraps around in the flagellar groove
- Mainly marine
- Cellulose case
- Responsible for red tide
- Some symbiotic species
- Unicellular
- Asexual Reproduction


Phylum Sarcodina (Rhizopoda/Amoebozoa)



- Amoeba
- Motile
- Unicellular
- HavePseudopods
- Freshwater Environments
- Asexual Reproduction


Phylum Ciliaphora



- Paramecium
- Freshwater or Marine environment
- Ciliated
- Multinucleate (one macronucleus and at least one micronucleus)
- Some motile and some nonmotile
- Complex organisms
- Sexual Reproduction


Phylum Apicomplexa

- Apicomplexans
- Parasitic
- Motile and nonmotile(in adult stage)
- Sexual and Asexual Reproduction
- Unicellular
- Cluster of organelles at apical end of cell
- Malaria

Phylum Oomycota

- Water Molds
- Cell Wall composed of cellulose
- Multicellular
- Filamentous
- Heterotrophic
- Decomposers
- Responsible for Irish
 Potato Famine of the
 1840s

Phylum Myxomycota

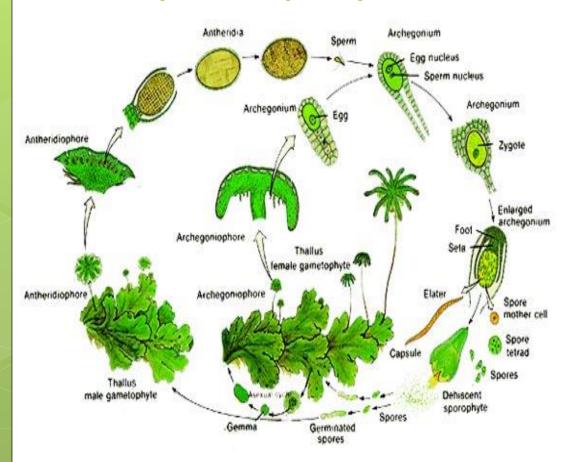
- PlasmodialSlime Molds
- Multicellular
- Heterotrophic

Phylum Acrasiomycota

- Cellular Slime Molds
- Unicellular, in harsh environmental conditions will form an aggregate body made up of multiple merged cells to form a large multinucleate cell

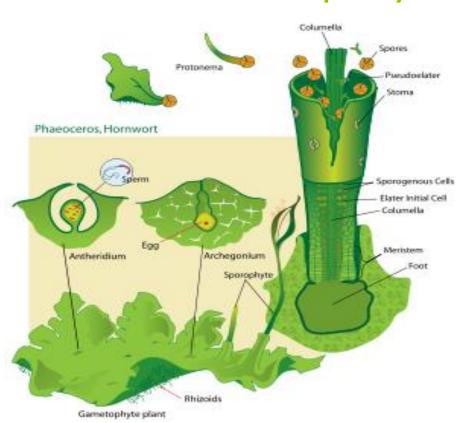
Kingdom Plantae

• Plants:

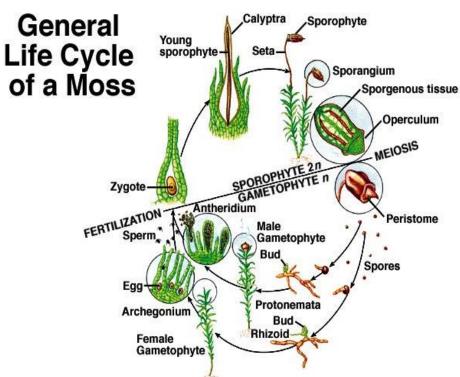

- Are autotrophic (photosynthesis) multicellular organisms
- Have cell walls made of cellulose
- Have an alternation of gametophyte and sporophyte generations with distinct characteristics
- Are descended phylogenetically from Charophytes (Chlorophytes).

Nonvascular Plants

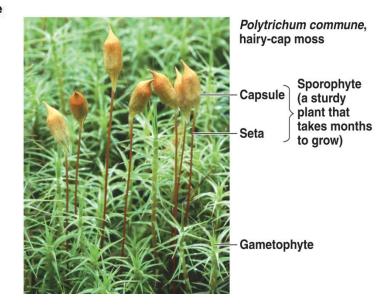
- Lack Vascular Tissue
- Often live in wet environments
- Small and herbaceous
- Gametophyte has rhizoids and a thallus
- Sporophyte has a foot, seta, and capsule, and grows out of the gametophyte
- Gametophyte Generation is dominant
- Three Phyla
 - Hepatophyta Liver Worts
 - Anthocerophyta Horn Worts
 - Bryophyta True Mosses


Hepatophyta

- Liver Worts
- Leafy and herbaceous
- Mostly tropical
- Gametophyte grows out of sporophyte, but is not reliant on sporophyte


Anthocerophyta

- Hornworts
- Thin, not very herbaceous
- Prefer shade



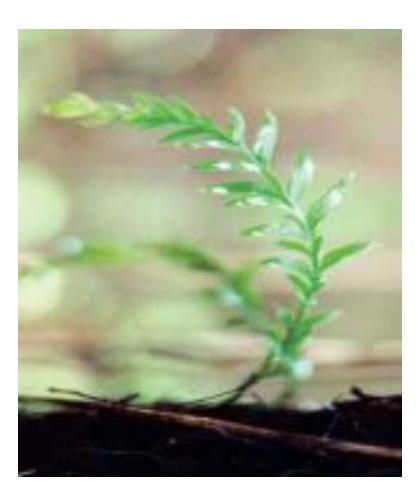
Bryophyta

- True Mosses
- Small herbaceous gametophyte, with a tall brownish sporophyte growing out of the gametophyte

No Vascular tissue, no seed

Vascular Seedless Plants

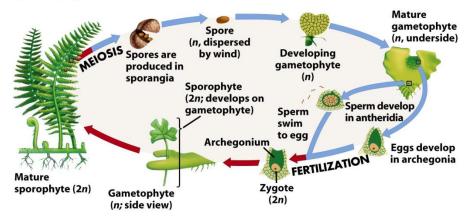
- Have vascular tissue but do not produce seeds
- Sporophyte Dominant
- Have roots, stems, and leaves
- Produce spores in special structures
- Four Phyla
 - Phylum Pterophyta Ferns
 - Phylum Lycophyta Club Mosses
 - Phylum Psilophyta Whisk Ferns
 - Phylum Sphenophtya Horse Tails

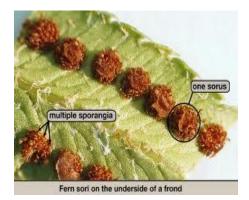

Phylum Lycophyta

- Club mosses, ground pines, spike mosses
- Produce spores in sporophylls contained inside a strobilus

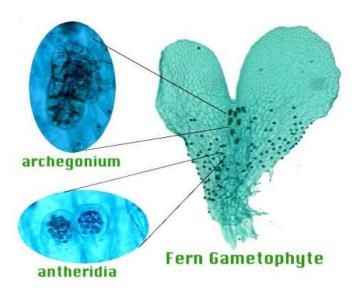
Phylum Psilophyta • Whisk ferns • Only a few left

Phylum Sphenophyta only one


- Horse Tails
- Only one genus left



Phylum Pterophyta


Ferns: Sporophyte is large and long lived but, when young, depends on gametophyte for nutrition.

- Ferns
- Vascular Tissue
- Have fronds with sori on underside
- Each sorus has multiple sporangia, which produce spores
- No Seeds

Vascular Seed Plants

- Gymnosperms Coniferophyta, Ginkgophyta, Cycadophyta, Gnetophyta
 - Have male pollen cones and female seed cones
- Angiosperms Anthophyta
 - Have flowers with male and female parts, and produce fruit
- Vascular seeds plants all have vascular tissue (xylem and phloem) and produce seeds
 - Sporophyte Dominant with a greatly reduced gametophyte stage (microscopic in some)
 - Produce two types of gametophytes (male and female)
 - Pollen grain (male) microspores
 - Ovules with megasporangia which make megaspores (female)

Gymnosperms'

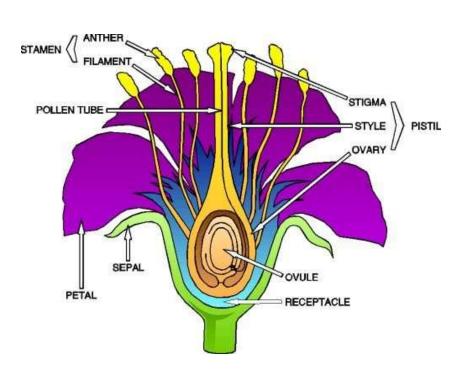
Gnetophyta

Ginkgophyta

Cycadophyta

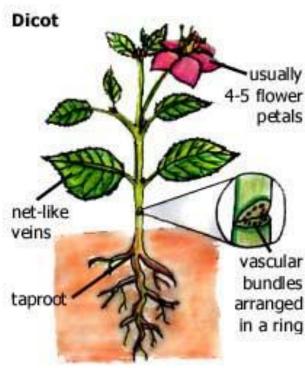
Coniferophyta

Phylum Coniferophyta



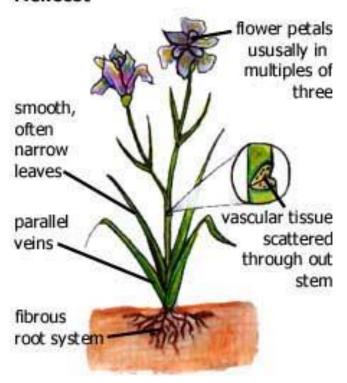
- Conifers
- Have male and female cones
- Have needle-like leaves
- Woody Softwoods
- No Flower

Phylum Anthophyta



- Flowering Plants
- Parts:
 - Stamen male
 - Pistil female
 - Petals modified leaves
 - Sepals
 - Receptacle Catches nectar
- Monocotyledon or Dicotyledon
- Woody Hardwoods
- Herbaceous

Phylum Anthophyta Dicotyledon



- Plants with two embryonic leaves (cotyledons) in the seed
- Have petals in multiples of four or five
- Vascular tissue in rings
 - Can be counted to find age
- Have branched leaves
- Pollen with three pores
- Branched, extensive root system

Phylum Anthophyta Monocotyledon

Monocot

- Plants with one embryonic leaf (cotyledon)
- Petals in multiples of three
- Scattered vascular tissue
 - No rings, no way to count rings for age
- Parallel leaves
- Pollen with one pore
- Clustered, shallow roots

Questions

Prepared by

K. Martin (Peer Tutor) & D. Leonard (Learning Specialist)
The Academic Support Center @ Daytona State College