Astronomy Equations

Chapter 1 Measuring Distance

$parallax = \frac{360}{2\pi} x \frac{baseline}{distance}$	$diameter = distance \mathbf{x} \frac{angular \ diameter}{57.3}$	$distance = baseline \ x \frac{57.3}{parallax}$
---	--	---

Chapter 2 Copernican Revolution

$p^2(in \ earth \ years) = a^3(in \ Au's)$	$F = \frac{Gm_1m_2}{r^2}$	F = ma
$p^2(\text{in earth years}) = \frac{a^3(\text{in Au's})}{M_{total}(\text{in solar units})}$	$a = \frac{v^2}{r}$	$v_{escape} = \sqrt{2 \frac{GM}{r}}$
$V = \sqrt{\frac{GM}{r}}$		

Chapter 3 Radiation

$frequency = \frac{1}{period}$	$Velocity = \frac{wavelength}{period}$	Velocity = wavelength x frequency
Wavelength of peak emission $\alpha \frac{1}{temp}$	total energy emission α temp ⁴	$\lambda_{\max} = \frac{2.9 \text{mm}}{\text{T}}$
$F = \sigma T^4$	$L = 4\pi\sigma R^2 T^4$ OR luminosity a radius(solar radii) ² x tempurature(units of 5800K) ⁴	$\frac{\text{Apparent wavelength}}{\text{true wavelength}} = \frac{\text{true frequency}}{\text{apparent frequency}}$
$\frac{\text{Apparent wavelength}}{\text{true wavelength}} = 1 + \frac{\text{recession velocity}}{\text{wave speed}}$	$\frac{\text{Apparent wavelength}}{\text{true wavelength}} = \frac{\text{recession velocity}}{\text{wave speed}}$	$\frac{\text{change in wavelength}}{\text{true wavelength}} = \frac{\text{recession velocity}}{\text{wavespeed}}$
$\frac{\text{recession velocity}}{\text{wavespeed,c}} = \frac{\text{change in wavelength}}{\text{true wavelength}}$		

Chapter 4 Spectroscopy

E = hf

Chapter 5 Telescopes

			0.25	vavlength(µm)
Angular	resolution([arcsec)=	0.25-	dia

diameter(m)

Chapter 6 The solar system

Linear momentum = mass x velocity	Angular momentum α mass x rotation rate x radius ²
-----------------------------------	--

 $E_n = 13.6(1 - \frac{1}{n^2})(ev)$

Astronomy Equations

Chapter 7	Earth				
	Scattering by dust $\alpha \frac{1}{wavelength}$	Scattering by molecules $\alpha \frac{1}{wavelength^4}$		Fraction of material remaining $=\frac{1}{2}^{\frac{t}{T}}$	
Chapter 8	The Moon and Mercury	•	-		
	Avg. molecular speed $\left(\frac{km}{s}\right) = 0.157 \sqrt{\frac{gas \ temp.(k)}{molecular \ mass}}$		$Escape \ speed(\frac{km}{s}) = 11.2\sqrt{\frac{mass \ of \ body}{radius \ of \ mass}}$		
Chapter 16	The Sun				
	$\frac{\text{Solar luminosity}}{\text{solar mass}} = 2 \text{ x } 10^{-4} \frac{\text{W}}{\text{kg.}}$		$E = mc^2$		
Chapter 17	The Sun	-	•		
	$Distance(parsecs) = \frac{1}{parallax(arcseconds)}$	Apparent brightness(luminosity distance ²	energy flux) α	Apparent magnitude – absolute magnitude = $5log_{10} \frac{distance}{10pc}$	
	$L(solar units) = 10^{-(M-4.83)/2.5}$	$R = rac{\sqrt{L}}{T^2}$		Stellar lifetime α. stellar mass stellar luminosity	
	Stellar lifetime $\alpha \frac{1}{(stellar mass)^3}$				
Chapter 22	Chapter 22 Neutron Stars and Black Holes				
	$Deflection(arc \ sec.) = 1.75 \frac{M(solar \ masses)}{R(solar \ radii)}$				
Chapter 23	Chapter 23 The Milky Way Galaxy				
	$Total mass (solar masses) = \frac{orbital size (Au)^3}{orbital period (years)^3}$				
Chapter 24	Chapter 24 Galaxies				
	<i>Recessional velocity</i> = $H_0 x$ <i>distance</i>		$Redshift = \frac{observered}{c}$	$\frac{wave \ length-true \ wavelength}{true \ wavelength} = \frac{recessional \ velocity \ (v)}{speed \ of \ light \ (c)}$	
Chapter 25 Galaxies and Dark Matter					
	$Time = \frac{distance}{velocity} = \frac{1}{H_0}$		$\frac{1 \text{ Joule}}{(3 \times 10^8 \frac{\text{m}}{\text{s}})^2} = 1.1 \times 10^{-3}$	¹⁷ kg	
Chapter 27 The Early Universe					
		C	$=\lambda f$		