Finding the Vertex of a Parabola

Using the Vertex Formula: $\mathbf{x}=-\mathbf{b} / \mathbf{2 a}$

The vertex formula is one method for determining the vertex of a parabola. Recall that a parabola is formed when graphing a quadratic equation. The parabola will normally present with both ends heading up, or with both ends heading down, as seen below. To use the vertex formula, a quadratic equation must be put in the form $f(x)=a x^{2}+b x+c$, where $a \neq 0$. We will use $f(x)=x^{2}-4 x-3$ as an example.

To find the coordinates of the vertex using $x=-\frac{b}{2 a}$

1) Put the equation in proper form.

$$
f(x)=x^{2}-4 x-3
$$

2) Label the coefficients and the constant:

$$
f(x)=\begin{array}{ccc}
a & b & c \\
x^{2} & -4 x & -3
\end{array}
$$

We see that $a=1$, and $b=-4$
3) Place the coefficients into the vertex formula: $x=\frac{-b}{2 a}$

So, $\quad x=\frac{-(-4)}{2(1)}$

$$
\begin{aligned}
& x=\frac{4}{2} \\
& x=2
\end{aligned}
$$

The x-coordinate of the vertex is 2 .
4) To find the y-coordinate, first, change $f(x)$ to y.

$$
f(x)=x^{2}-4 x-3 \rightarrow y=x^{2}-4 x-3
$$

5) Then, plug the x value into the original function and solve for y.

$$
\begin{aligned}
& y=(2)^{2}-4(2)-3 \\
& y=4-8-3 \\
& y=-7
\end{aligned}
$$

The y-coordinate is -7 , putting the vertex at $(2,-7)$.

Finding the vertex of a parabola

Complete the Square Method

You may have used the Complete the Square method to solve for x. Sometimes we use complete the square to find the vertex of a parabola. We want to put the function into the vertex form of a quadratic function: $y=a(x-h)^{2}+k$. In this example, the leading coefficient is a 1 , as in $1 x^{2}-10 x+21$:

$$
f(x)=x^{2}-10 x+21
$$

We have a trinomial, a polynomial with 3 terms. We can change the $f(x)$ to y.

$$
y=x^{2}-10 x+21
$$

Divide the coefficient of the middle term by 2 , and square it:

$$
\begin{aligned}
& -10 / 2=-5 \\
& (-5)^{2}=25
\end{aligned}
$$

Add this quantity to each side of the equation.

$$
y+25=x^{2}-10 x+21+25
$$

Group the first two terms with the newly added quantity in a set of parentheses.

$$
y+25=\left(x^{2}-10 x+25\right)+21
$$

Factor this trinomial grouping into its perfect square factors.

$$
y+25=(x-5)(x-5)+21
$$

Simplify the expression, writing as a squared term with an exponent.

$$
y+25=(x-5)^{2}+21
$$

Subtract (or add) to get y by itself.

$$
y=(x-5)^{2}+21-25
$$

Simplify: $\quad y=(x-5)^{2}-4$

The function is now in the vertex form of a quadratic function: $y=a(x-h)^{2}+k$

In this form you can determine the vertex (h , k), where h is the x-value of the vertex, and k is the y-value of the vertex. (The value a is the coefficient of the first term. In our example, $\mathrm{a}=1$.)

Our vertex is $(5,-4)$. Watch the signs of the x - and y-values, so that you do not change the signs in the vertex formula.

When $\mathrm{a} \neq 1$, the trick is to "factor out" the a , and be careful to add the correct quantity to each side of the equation. Try this example:

$$
\begin{aligned}
& y=3 x^{2}+24 x-17 \\
& y=3\left(x^{2}+8 x\right)-17 \\
& y+3(16)=3\left(x^{2}+8 x+16\right)-17 \\
& y=3(x+4)(x+4)-17-3(16) \\
& y=3(x+4)^{2}-65 \\
& h=-4, k=-65
\end{aligned}
$$

The vertex is $(-4,-65)$.

