

Critical numbers for Hypothesis Tests

NEGATIVE z Scores

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294

Table A-2 Standard Normal (z) Distribution: Cumulative Area from the LEFT

Performing a Hypothesis Test for a population mean when σ is known:

The Standard Normal Distribution is used to test a hypothesis about a population mean when two conditions are met. First, the sample size must be large, n > 30, or the population distribution must be normal. Second, there must be an acceptable estimate for the standard deviation (σ) of the population.

Performing a Hypothesis Test for a population proportion:

Samples are used to test a hypothesis about the proportion of a population that possess one particular criteria. A sample is taken and the number of objects which meet the criteria are recorded. When np > 5 and nq > 5 where n is the size of the sample, p is the proportion of the population which meet the criteria and q is the proportion of the population which do not meet the criteria, the result is a Standard Normal Distribution. By dividing the resulting distribution by the number in the sample, the result is a Standard Normal Distribution that reflects the proportion of the samples which meet the criteria. Thus the Standard Normal Distribution is used to test a hypothesis about a population proportion.

Finding Critical Numbers using the Standard Normal Distribution:

To find a critical number for a hypothesis test, first determine whether it is a left tail, right tail or two tail test. This is determined by examining the claim. Then find α or $\alpha/2$ on the NEGATIVE side of the Standard Normal Distribution Table. Lastly decide on the sign of the critical number.

If the claim is $\langle \text{ or } \geq$, then the problem is a left tail test. Left tail tests DO NOT divide α by two. Look up α on the NEGATIVE side of the Standard Normal Distribution Table. The final critical number will be negative.

If the claim is > or \leq , then the problem is a right tail test. Right tail tests DO NOT divide α by two. Look up α on the NEGATIVE side of the Standard Normal Distribution Table. Alternatively looking up 1 - α on the POSITIVE side of the Standard Normal Distribution Table will produce a z score with the same absolute value but it is positive. The final critical number will be positive.

If the claim is = or \neq , then the problem is a two tail test. Two tail tests divide α by two. Look up $\alpha/2$ on the NEGATIVE side of the Standard Normal Distribution Table. Alternatively looking up 1 - $\alpha/2$ on the

POSITIVE side of the Standard Normal Distribution Table will produce a z score with the same absolute value but it is positive. Two tail tests have two critical numbers, one positive and one negative.

Example 1: Find the critical number or numbers for a claim of p = 0.35 and $\alpha = .03$. Since the claim is p = 0.35, this is a two tail test. Taking α and dividing by 2 yields .015. Looking at the row on the NEGATIVE side of the Standard Normal Distribution Table labeled -2.1, .0150 is in the column that corresponds to .07. So the z-score is -(2.1 + .07) = -2.17. This is a two tail test so the critical numbers are ± 2.17 .

Example 2: Find the critical number or numbers for a claim of $\mu < 2.31$ and $\alpha = .03$. Since the claim is $\mu < 2.31$, this is a left tail test. Looking at the row on the NEGATIVE side of the Standard Normal Distribution Table labeled -1.8, .0301 is in the column that corresponds to .08 and .0294 is in the column that corresponds to .09. Since .0301 is closest to .0300 the z-score is -(1.8 + .08) = -1.88. This is a left tail test so the critical number is -1.88.

Example 3: Find the critical number or numbers for a claim of p > 0.20 and $\alpha = .01$. Since the claim is p > 0.20, this is a right tail test. Looking at the row on the NEGATIVE side of the Standard Normal Distribution Table labeled -2.3, .0102 is in the column that corresponds to .02 and .0099 is in the column that corresponds to .03. Since .0099 is closest to .0100 the z-score is -(2.3 + .03) = -2.33. This is a right tail test so the critical number is +2.33.

Practice Problems: Find the Critical Number or Numbers for each of the following claims and significance levels. For each problem involving a population mean, assume that the sample size is greater than 30 and that a reasonable approximation of σ is given.

- 1.) Claim: p > .5, $\alpha = .03$
- 2.) Claim: $\mu < 324.6, \alpha = .04$
- 3.) Claim: $\mu \neq 15.4, \alpha = .04$
- 4.) Claim: p < .65, $\alpha = .01$
- 5.) Claim: $p = .40, \alpha = .05$
- 6.) Claim: $\mu > 157.8, \alpha = .02$
- 7.) Claim: $\mu \ge 76.2, \alpha = .03$
- 8.) Claim: $p \le 0.29$, $\alpha = .01$

Solutions:

1.) 1.88	2.) – 1.75	3.) ± 2.05	4.) -2.33
5.) ± 1.96	6.) 2.05	7.) – 1.88	8.) 2.33

