Student's t-distribution

(Finding critical values for " t ")

Student's \boldsymbol{t}-distribution (or simply the \boldsymbol{t}-distribution) is a probability distribution that arises in the problem of estimating the mean of a normally distributed population when the population standard deviation is unknown and has to be estimated from the data.

Table A-3	T Distribution					
			\propto			
Degrees of	$\begin{aligned} & .005 \\ & \text { (one tail) } \end{aligned}$. 01 (one tail)	$\begin{aligned} & .025 \\ & \text { (one tail) } \end{aligned}$	$.05$ (one tail)	$\text { . } 10$ (one tail)	$\begin{aligned} & .25 \\ & \text { (one tail) } \end{aligned}$
Freedom	. 01 (two tail)	$\begin{aligned} & .02 \\ & \text { (two tail) } \end{aligned}$	$\begin{aligned} & .05 \\ & \text { (two tail) } \end{aligned}$. 10 (two tail)	. 20 (two tail)	. 50 (two tail)
1	63.657	31.821	12.706	6.314	3.078	1.000
2	9.925	6.965	4.303	2.920	1.886	. 816
3	5.841	4.541	3.182	2.353	1.638	. 765
4	4.604	3.747	2.776	2.132	1.533	. 741
5	4.032	3.365	2.571	2.015	1.476	. 727
6	3.707	3.143	2.447	1.943	1.440	. 718
7	3.500	2.998	2.365	1.895	1.415	. 711
8	3.355	2.896	2.306	1.860	1.397	. 706
9	3.250	2.821	2.262	1.833	1.383	. 703
10	3.169	2.764	2.228	1.812	1.372	. 700

The number at the beginning of each row in the table above is defined as the degrees of freedom $=n-1$. The decimal along the top is alpha $=\propto$, the level of significance. The numbers in the main body of the table are the critical values. Below are three examples of finding the critical values for t using the chart.

1) Find the critical value for a 95% confidence level where $\mathrm{n}=10$ and σ is unknown.

Degrees of freedom $=\mathrm{n}-1=9$
(alpha) $\propto=1-.95=.05$ in two tails (column \# 4)
$\mathrm{T}=2.262$ is the critical value for t .
2) Find the critical values for a 98% confidence level where $\mathrm{n}=5$ and σ is unknown.

Degrees of freedom $=\mathrm{n}-1=4$
(alpha) $\propto=1-.98=.02$ in two tails (column \# 3)
$\mathrm{T}=3.747$ is the critical value for t .
3) Find the critical values for a 90% confidence level where $\mathrm{n}=9$ and σ is unknown.

Degrees of freedom $=\mathrm{n}-1=8$
(alpha) $\propto=1-.90=.10$ in two tails (column \# 5)
$\mathrm{T}=1.860$ is the critical value for t .

Construct a Confidence Interval using the t-distribution

To use the t-distribution the standard deviation (σ) of the population is not known and the population data is approximately normally distributed. Below are two examples of constructing a confidence interval for a mean.

1) Estimating cost to repair a car: In crash tests of 10 cars, collision repair cost is found to have a distribution that is roughly bell-shaped, with a mean of $\$ 1786$ and a standard deviation of $\$ 937$. Construct a 99% confidence interval for the mean repair cost in all such vehicle collisions.

Define the variables:

$\mathrm{n}=10 \quad$ Number in the sample
$\mathrm{s}=937 \quad$ Standard deviation of the sample
$\bar{X}=1786 \quad$ Mean of the sample
$\mathrm{n}-1=9 \quad$ Degrees of freedom
$\alpha=1-.99=.01$ Level of significance for a Confidence Interval of 99%
Use column \#2 where $\alpha=.01$ in two tails
Move down column \# 1 to the degrees of freedom $=9$ and read the number in the column \#2
The critical value is $t=3.250$ for a confidence level of 99%
Construct a Confidence Interval for the Estimate of μ where σ (sigma) is not known
$\bar{X}-E<\mu<\bar{X}+E$ Find the margin of error (E) $\quad E=t_{\alpha / 2} \frac{s}{\sqrt{n}}=3.250 \frac{937}{\sqrt{10}}=962.99 \approx 963$
$1786-963<\mu<1786+963$
$823<\mu<2749$
2) Estimating Car Pollution: In a sample of 7 cars each car was tested for emissions of nitrogenoxide and found the average emission was 0.121 grams per mile and the standard deviation is 0.04 grams per mile. Construct a 98% confidence interval estimate of the mean amount of nitrogen-oxide emissions for all cars.

Define the variables:

$\mathrm{n}=7 \quad$ Number in the sample
$\mathrm{s}=0.04 \quad$ Standard Deviation of the sample
$\bar{X}=0.121 \quad$ Mean of the sample
$\mathrm{n}-1=6 \quad$ Degrees of freedom
$\alpha=1-.98=.02$ Level of significance for a Confidence Interval 98\%
Use column \# 3 where $\alpha=.02$ in two tails.
Move down column \#1 to the degrees of freedom $=6$ and read the number in the column \#3.
The critical value is $t=3.143$ for a confidence level of 98%
Construct a Confidence Interval for the Estimate of μ where σ (sigma) is not known
$\bar{X}-E<\mu<\bar{X}+E \quad$ Find the margin of error (E) $\quad E=t_{\alpha / 2} \frac{s}{\sqrt{n}}=3.143 \frac{0.04}{\sqrt{7}} \approx 0.047$
$0.121-0.047<\mu<0.121+0.047$
$0.074<\mu<0.168$

