Statistics Formulas

Statistics is essentially the process of learning from data. The goal of statistics is to make correct statements or inferences about a population based on a sample.

This handout consists of terminology and formulas contained in Essentials of Statistics (4 $4^{\text {th }}$ edition) by Mario Triola.

Chapter 3 - Descriptive Statistics:

$\bar{x}=\frac{\sum x}{n} \quad$ Mean of a sample
$\mu=\frac{\sum x}{N} \quad$ Mean of a population
$\bar{x}=\frac{\sum(x \cdot f)}{\sum f}$ Mean of a frequency distribution
$s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{(n-1)}}$ Standard deviation of a sample
$s=\sqrt{\frac{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}}{n(n-1)}} \quad \begin{aligned} & \text { Standard deviation } \\ & \text { (shortcut) }\end{aligned}$
$s=\sqrt{\frac{n\left[\sum\left(f \bullet x^{2}\right)\right]-\left[\sum(f \bullet x)\right]^{2}}{n(n-1)}}$
Standard deviation (frequency)

Chapter 4 - Probabilities:

$P(A$ or $B)=P(A)+P(B)$
if A, B are mutually exclusive
${ }_{n} P_{r}=\frac{n!}{(n-r)!} \quad$ Permutations (no elements alike)
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
if A and B are not mutually exclusive
${ }_{n} P_{r}=\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}$ Permutations (n_{1} alike, \ldots)
$P(A$ and $B)=P(A) \bullet P(B) \quad$ if $A, \quad B$ are
independent
${ }_{n} C_{r}=\frac{n!}{(n-r)!r!}$ Combinations
$P(A$ and $B)=P(A) \bullet P(B \mid A) \quad$ if A, B are
dependent

Chapter 5 - Probability Distributions:

$\mu=\sum[x \bullet P(x)]$ Mean probability distribution
$\sigma=\sqrt{\sum\left[x^{2} \cdot P(x)\right]-\mu^{2}} \quad \begin{aligned} & \text { Standard deviation } \\ & (\text { probability dist })\end{aligned}$
$P(x)=\frac{n!}{(n-x)!x!} \bullet p^{x} q^{n-x}$ Binomial probability
$\mu=n \bullet p \quad$ Mean (binomial)
$\sigma^{2}=n \bullet p \bullet q$ Variance (binomial)
$\sigma=\sqrt{n \bullet p \bullet q}$ Standard deviation (binomial)

Statistics Formulas

Chapter 6 -Normal Distribution:

$z=\frac{x-\bar{x}}{s}$ or $\frac{x-\mu}{\sigma}$ standard score
$x=z s+\bar{x}$
or standard score (different form)
$\mu_{\bar{x}}=\mu \quad$ central limit theorem
$\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \quad$ central limit theorem (standard error)
$x=z \sigma+\mu$

Chapter 7 -Confidence Intervals:

$\hat{p}-E<p<\hat{p}+E$ proportion where $E=z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}$
$\bar{x}-E<\mu<\bar{x}+E$ mean
where $E=z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$ if σ is known or $E=t_{\alpha / 2} \frac{s}{\sqrt{n}}$ if σ is unknown

Chapter 7 -Sample Size Determination:

$n=\frac{\left[z_{\alpha / 2}\right]^{2} \cdot 0.25}{E^{2}} \quad$ proportion (\hat{p} and \hat{q} are not known)
$n=\frac{\left[z_{\alpha / 2}\right]^{2} \hat{p} \hat{q}}{E^{2}} \quad$ proportion (\hat{p} and \hat{q} are known)
$n=\left[\frac{z_{\alpha / 2} \sigma}{E}\right]^{2} \quad$ mean

Chapter 8 - Test Statistics (one population):

$z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}} \quad$ proportion - one population
$t=\frac{\bar{x}-\mu}{s / \sqrt{n}} \quad$ mean - one population
(σ unknown)
$z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \quad$ mean - one population
(σ known)

