center

Probability Permutations

A permutation is an ordering of distinct objects in a straight line. The order of the objects is important. If we select \mathbf{r} different objects from a set of \mathbf{n} objects and arrange them in a straight line, this is called a permutation of \mathbf{n} objects taken \mathbf{r} at a time. Permutation is used when the order the objects are chosen matters.

We write this as $\mathrm{P}(\mathrm{n}, \mathrm{r})$
P reminds you of the word permutation.
n tells you the number of objects you may select.
r specifies how many you are selecting.

For example, $\mathrm{P}(5,3)$ indicates you are counting permutations (straight-line arrangements) formed by selecting three different objects (r) from a set of five available objects (n). This would apply if we are choosing a president, vice-president and treasurer for a club (the order you choose them in changes the position they hold, so order matters).

To solve this, we use the formula $\mathrm{P}(n, r)=\frac{n!}{(n-r)!}$
$\mathrm{P}(5,3)=\frac{5!}{(5-3)!}=\frac{5 \bullet 4 \cdot 3 \cdot 2 \bullet 1}{2 \bullet 1}=\frac{60}{1}=60$

In forming combinations, order is not important. If we choose \mathbf{r} objects from a set of \mathbf{n} objects, we say that we are forming a combination of \mathbf{n} objects taken \mathbf{r} at a time.

We write this as $\mathrm{C}(\mathrm{n}, \mathrm{r})$
For example, if we want to know how many four-person committees can be formed from a set of ten people we can solve this using the combination rule:
$\mathrm{C}(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{r!(n-r)!}$
$\mathrm{C}(10,4)=\frac{10!}{4!(10-4)!}=\frac{10 \bullet 9 \bullet 8 \bullet 7 \bullet 6 \bullet 5 \bullet 4 \bullet 3 \bullet 2 \bullet 1}{4 \bullet 3 \cdot 2 \bullet 1 \bullet 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \bullet 1}=210$

