- 1. section 1.1
- 2. section 1.2
- 3. section 3.3 $s \approx \frac{\text{range}}{4} \approx \frac{74 48}{4}$
- 4. sections 3.2, 3.3

sort the values from low to high and/or use a calculator {0,0,1,2,3,3,4,5,6,8,9,9,9,11,14,15}

a.
$$\bar{x} = \frac{\sum x}{n} = \frac{99}{16} = 6.2$$

b. median $= \frac{5+6}{2}$
c. mode $= 9$
d. range $= 15 - 0$

e. midrange = $\frac{15+0}{2}$

f. mean and median are to the right of the mode

5. section 3.2

a. There are a total of 28 data values. The median would be the value between the 13^{th} and 14^{th} values. The third class contains these values and the median.

- b. class width = 111.0 80.0 = 31.0
- c. The mode is in the class with the highest frequency.

6. section 2.2 relative frequency = $\frac{\text{class frequency}}{\text{total # of values}}$

- 7. section 3.3 Empirical Rule: The values are within 3 SD of the mean.
- 8. Section 3.2 and 3.3 Find the class midpoints and use the formulas or calculator to find answers.
- 9. section 3.4 $z = \frac{96.6 98.2}{0.62} = -2.58$

10. section 3.4 student X :
$$z = \frac{92 - 71}{15} = 1.40$$

student Y: $z = \frac{688 - 493}{150} = 1.30$

11. section 3.4	maximum usual value = μ + 2 σ = 99.44 minimum usual value = μ - 2 σ = 99.44 99.38° is within the usual range of values.
12. section 4.2	$0 \le P(A) \le 1$
13. section 4.6	Fundamental Counting Rule: $8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 = 8^5$
14. section 4.6	Fundamental Counting Rule: 8•7•6•5•4
15. section 4.6	Fundamental Counting Rule: 1•8•8•8•8 There is only 1 choice for the first position.
16. section 4.6	Fundamental Counting Rule: 8•8•8•8•4 There are 4 choices for the last position (1,3,5,7)
17. section 4.6	₈ C ₅
18. section 4.6	₈ P ₅
19. section 4.4	$(0.17)(0.17)(0.17)(0.17) = (0.17)^4$
20. section 4.5	$P(1 \text{ correct answer}) = 0.25$ $P(1 \text{ wrong answer}) = 0.75$ $P(\text{at least 1 correct}) = 1 - P(\text{none correct})$ $= 1 - P(\text{all wrong})$ $= 1 - (0.75)^{12}$
21. section 4.4	P(K and Q) = $\frac{4}{52} \cdot \frac{4}{51}$
22. section 4.4	$P(pair) = \frac{52}{52} \cdot \frac{3}{51}$ The second card has to match the first card.
23. section 4.3	P(face card or diamond) = $\frac{12+13-3}{52}$
24. section 5.2	$P \leq 0.05$
25. section 4.4	$P(\text{neither green}) = \frac{8}{10} \cdot \frac{7}{9}$
26. section 4.2	odds = $\frac{\# \text{ favorable}}{\# \text{ unfavorable}} = \frac{3}{7} \text{ or } 3:7$ probability: denominator = total odds: numerator + denominator = total
27. section 4.3	$P(\text{on-time}) = \frac{92}{114}$

28. section 4.4	P(Statewide and late) = $\frac{3}{114}$
29. section 4.3	$P(\text{Southern or on-time}) = \frac{45 + 92 - 34}{114}$
30. section 4.5	$P(late Westward) = \frac{8}{38}$
31. section 4.6	Fundamental Counting Rule 3•7•12
32. section 4.6	P(at least 6 B) = P(6B and 2G) + P(7B and 1G) + P(8B) = ${}_{12}C_6 \bullet_9 C_2 + {}_{12}C_7 \bullet_9 C_1 + {}_{12}C_8$
33. section 5.2	Expected value = μ = $\sum x \bullet P(x) = 3\left(\frac{3}{12}\right) + (-1)\left(\frac{9}{12}\right) = 0$
34. section 5.3	fixed number of trials 2 outcomes probability remains constant for each trial trials are independent
35. section 4.3	D and E share 2 and 4
36. section 4.3	D and F share 3
37. section 4.3	E and F share no outcomes
38. section 4.4	Joe is late because he forgot to set his alarm clock.
39. section 4.4	There is no connection linking milk being on sale and notebook paper being on sale.
40. section 4.4	There is no connection linking a grade of "A" to being a girl.
41. section 5.3	n = 30; $x = 5$; $p = 0.20Use the formula or a calculator to find the probability.$
42. section 5.4	$\mu = np = 800(0.7) = 560$ $\sigma = \sqrt{800 \cdot 0.7 \cdot 0.3} = 12.96$ maximum usual value = $\mu + 2\sigma \approx 586$ minimum usual value = $\mu - 2\sigma \approx 534$ 540 is within the range of usual values.
43. section 5.4	Expected value = μ = np = 20(0.25) = 5
44. section 6.2	P = 0.9761 - 0.2420
45. section 6.2	P = 1 - 0.0344

46. section 6.3	$z = \frac{53-60}{4}$ $P(x<53) = P(z<-1.75) = 0.0401$
47. section 6.3	$z = \frac{16.1 - 15.2}{0.9}$ $P(x > 16.1) = P(z > 1.00) = 1 - 0.8413$
48. section 6.2	range = $36 - 22 = 14$ $p = \frac{1}{14}$ P(x<25) = $\left(\frac{1}{14}\right)(25 - 22) = \frac{3}{14}$
49. section 6.3	A = 0.6 \approx 0.5987 z = 0.25 = $\frac{x - 48.3}{8.1}$ x = 48.3 + (8.1)(0.25) = 50.3
50. section 5.3	$P(x \ge 6) = P(6) + P(7) + P(8) = 0.10938 + 0.03125 + 0.00391 = 0.145$ n = 8; p = 0.5
51. section 6.5	$\sigma_{\overline{x}} = \frac{1.8}{\sqrt{40}} = 0.285 \qquad z = \frac{7.7 - 8.4}{0.285} = -2.46$ $P(\overline{x} > 7.7) = P(z > -2.46) = 1 - 0.0069$
52. section 7.4	α = 0.10; df = 41, use 40
53. section 7.2, 7.3	$\overline{x} - E = 33.61$ $\overline{x} + E = 45.23$ $2\overline{x} = 78.84$ $\overline{x} = 39.42$ $E = 45.23 - 39.42$
54. section 7.4	t-distribution $\alpha = 0.10$ n = 40, df = 39, use 38 $t_{\frac{\alpha}{2}} = 1.686$ E = $1.686 \left(\frac{8.2}{\sqrt{40}} \right) = 2.186$ $103.4 - 2.186 < \mu < 103.4 + 2.186$ $101.2 < \mu < 105.6$
55. section 7.3	α = 0.06; use s = 8.2; E = 1.5
	$z_{\frac{\alpha}{2}} = 1.88$ $n = \left(\frac{1.88 \cdot 8.2}{1.5}\right)^2 = 105.6$ $n = 106 \{\text{round up}\}$
56. section 7.3	If n becomes larger, the value of E becomes smaller because the calculations involve dividing by a bigger number.
57. section 7.3	A higher confidence level results in a larger critical value. The value of E will increase because the calculations involve multiplying by a bigger number.
58. section 7.2	n = 863; x = 61; α = 0.10; \hat{p} = 0.0707; \hat{q} = 0.9293 $z_{\frac{\alpha}{2}} = 1.645$ $E = 1.645 \sqrt{\frac{0.0707 \cdot 0.9293}{863}} = 0.0144$ 0.0707 < p < 0.0851

59. section 7.2	n = 220; \hat{p} = 0.25; \hat{q} = 0.75; α = 0.05; E = 0.02			
	$z_{\frac{\alpha}{2}} = 1.96$ $n = \frac{(1)^{2}}{2}$	$\frac{.96)^2 \bullet 0.25 \bullet 0.75}{(0.02)^2} = 1800.75$	n=1801	
60. section 8.2	claim: $\mu > 99.2$ H ₀ : $\mu = 99.2$	H ₁ : μ > 99.2	right-tailed	
61. section 8.2	claim: $p \le 0.34$ H ₀ : $p = 0.34$	false claim: $p > 0.34$ H ₁ : $p > 0.34$	right-tailed	
62. section 8.2		false claim: $\mu \neq 48,000$	two-tailed	
63. section 10.2	n = 10; α = 0.05; critic -0.804 > 0.632	cal value = cv = 0.632 There is linear correlation.		
64. section 10.2, 10.3	When r is negative, the	e linear regression equation has	negative slope.	
65. section 8.5	claim: $\mu \ge 14$; false cla H ₀ : $\mu = 14$; H ₁ : $\mu < 1$	1.8; $\alpha = 0.05$; df = 44, use 40 aim: $\mu < 14$.4; ; left-tailed; cv = -1.684 $\frac{4}{2} = -1.49$; Fail to reject H ₀		
66. section 8.3			= ±2.575	
67. section 8.4	n = 40; \bar{x} = 23.1; σ = claim: μ > 22; false cl H ₀ : μ = 22; H ₁ : μ > 2 test stat: z = $\frac{23.1 - 2}{\frac{2.4}{\sqrt{40}}}$	aim: μ ≤ 22 22; ; right-tailed; cv = 1.75		