Graphing a basic sine curve

$\frac{3 \pi}{2}$
To understand the basic sine curve, set up the unit circle and then "unwrap" it counterclockwise starting from 0 radians and moving all the way around to 2π radians. Find sine (the y value) for each angle:

C. Finish labeling the x -axis:

Graphing sine (what we've done so far)

Refer to the unit circle to help set up the graph of sine. One complete cycle is from 0 to 2π. This is where the basic graph of $y=\sin x$ begins and ends.

Cut the graph in half.

Cut it in half again.

Use the unit circle to complete the x -axis.

Now you can draw and label the y-axis. The cycle begins at 0 , which is where the y-axis is located. The amplitude is 1 on the basic sine graph: one unit above the x-axis and one unit below the x-axis.
$\operatorname{Sin} x$ at $0, \pi$, and 2π is 0 . These are the zeros or x intercepts. Place a point at each of these locations. $\operatorname{Sin}_{3 \pi}$ at $\frac{\pi}{2}$ is 1 and -1 at $\frac{3 \pi}{2}$. Place a point at each of these locations also.

We will graph one wave of sine $\boldsymbol{\sim}$ that begins at 0 and ends at 2π. Start your curve at 0 , going up to the maximum value at $x=\frac{\pi}{2}$, down through π, continuing on to the minimum value at $x=\frac{3 \pi}{2}$ and then back up to 2π.

