Symmetry and Graphing

For each of the following graphs, list any symmetries, and state whether the graph shows a function.

			Graph A: This graph is symmetric about it axis, the line $x=3$. There is no other symmetry. This graph shows a tunction. Graph B: This graph is symmetric about the axes $x=0$ (the y-axis) and $y=0$ (the x-axis) and also about the origin. Since a vertical line could cross this graph twice, it does not show a function. Graph C : This graph is symmetric about the axes $x=1$ and $y=-2$, and the point $(1,-2)$. Since a vertical line can be drawn to cross the ellipse twice, this is not a function.
			Graph D: This graph is symmetric about slanty lines: y $=x$ and $y=-x$. It is also symmetric about the origin. Because this hyperbola is angled correctly, it is a function. Graph E: This graph (of a square-root function) shows no symmetry whatsoever, but it is a function.
			Graph F: This graph (of a cubic function) is symmetric about the point $(-4,-1)$, but not around any lines. This graph does show a function. Graph \mathbf{G} : This parabola is lying on its side. It is symmetric about the line $y=2$. It is not a function. Graph H : This parabola is vertical and is symmetric about the y-axis. It is a function.

Symmetry and Graphing

Determine from the graphs whether the displayed functions are even, odd, or neither.

Graph A: This linear graph goes through the origin. If I rotate the graph 180° around the origin, I'll get the same picture. So this graph is odd. (The
function would not be odd if the graph didn't go through the origin.)

Graph B: This parabola's vertex is on the y-axis, so the axis of symmetry is the y-axis. That means that the function is even.

Graph C: This cubic is centered on the origin. If I rotate the graph 180° around the origin, l'll get the same picture. So this graph is odd.

Graph \mathbf{D} : This cubic is centered at the point $(0,-3)$. This graph is symmetric, but not about the origin or the y-axis. So this function is neither even nor odd.

Graph E: This cube root is centered on the origin, so this function is odd.

Graph F: This square root has no symmetry. The function is neither even nor odd.
Graph G: This graph looks like a bell-shaped curve. Since it is mirrored around the y-axis, the function is even.
Graph H : This hyperbola is symmetric about the lines $y=x$ and $y=-x$, but this tells me nothing about evenness or oddness. But the graph is also symmetric about the origin, so this function is odd.

