Graphing a Basic Logarithmic Equation

 (using the inverse of a logarithm)First, keep in mind that logarithm equations and exponential equations are inverses of each other .

Example: $\mathbf{y}=\boldsymbol{\operatorname { l o g }}_{2} \mathbf{x}$ is the inverse of

$$
y=2^{x}
$$

Notice: $\quad \mathbf{y}=\log _{2}$ - Do you see $\mathbf{y}=\mathbf{2}^{\mathbf{x}}$?

This is a convenient way to find the equation of the inverse of a logarithm (i.e., an exponential equation).

Practice:
Logarithmic form

$$
y=\log _{3} x
$$

Inverse of $y=\log 3 x$ in Exponential form

$$
y=3^{x}
$$

Inverse of $y=\log 7 x$ in Exponential form
$y=\log _{7} x$
$y=\log x$
$y=7^{x}$

The Key: You can easily graph a logarithmic equation using the graph of an exponential equation.

Graph: $\mathbf{y}=\boldsymbol{\operatorname { l o g }}_{3} \mathbf{x}$

- First graph its inverse $\left(\mathbf{y}=\mathbf{3}^{\mathbf{x}}\right)$ by using a:
t-chart
or

graphing calculator

$$
y=3 \Lambda x
$$

Enter this into a graphing calculator then go to TABLE to get some ordered pairs. (see below)

- If you are using a graphing calculator, go to TABLE and jot down a few ordered pairs:

$$
(-1,1 / 3) \quad(0,1) \quad(1,3)
$$

x	$\mathrm{y} \mathbf{1}$
-1	.3333
0	1
1	3

- Because exponential equations are inverses of logarithm equations, just switch the x 's and y 's, plot them, and you have graphed a logarithm:
new points: $(1 / 3,-1)(1,0)(3,1)$

