

Graphing a Basic Logarithmic Equation

(using the inverse of a logarithm)

First, keep in mind that logarithm equations and exponential equations are inverses of each other .

Example: $\mathbf{y} = \mathbf{log}_2 \mathbf{x}$ is the inverse of $\mathbf{y} = \mathbf{2^x}$ Notice: $(\mathbf{y} =)\mathbf{log}_2 \mathbf{x}) \leftarrow \text{Do you see } \mathbf{y} = \mathbf{2^x}$?

This is a convenient way to find the equation of the inverse of a logarithm (i.e., an exponential equation).

Practice:

OC

 $\mathbf{y} = \mathbf{log}_7 \mathbf{x}$

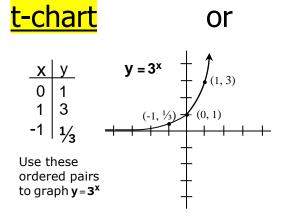
Inverse of $y = \log_3 x$

Inverse of <u>y = log 7 x</u> in Exponential form

These are inverses of each other

= log

The Key: You can easily graph a logarithmic equation using the graph of an exponential equation.



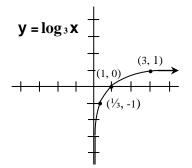
DaytonaState.edu/ASC E-mail: ASC@DaytonaState.edu • Phone: (386) 506-3673 ons State College assures equal opportunity in employment and education services to all individuals without at to race services are reliefued idability individual statistication of belief or maintal status

Graph: **y** = **log**₃**x**

• First graph its inverse (**y** = **3**^x) by using a:

<u>graphing calculator</u>

Enter this into a graphing calculator then go to TABLE to get some ordered pairs. (see below)


 If you are using a graphing calculator, go to TABLE and jot down a few ordered pairs:

 $(-1, \frac{1}{3})$ (0, 1) (1, 3)

х	уı
-1	.3333
0	1
1	3
I	

 Because exponential equations are inverses of logarithm equations, just switch the x's and y's, plot them, and you have graphed a logarithm:

new points: (¹/₃, -1) (1, 0) (3, 1)

