

Three Basic Steps

- 1. Set up the problem as an equation.
- 2. Solve for "k".
- 3. Substitute the value of "k" into the Step 1 equation to solve for the new "unknown".

Three Basic Situations

A variation problem can also include a *combination* of the three situations:

"w" varies jointly as "x" and "y", and inversely as "z"

DaytonaState.edu/ASC E-mail: ASC@DaytonaState.edu • Phone: (386) 506-3673 tona State College assures equal opportunity in employment and education exices to all individuals without and to race. service, disability, mational origin, political affiliation or belief, or maintal status.

Remember!

Note!

S STARTS HERE.			
Three Steps: 1. Set up an equation 2. Solve for "k" 3. Plug "k" back in	<u>Three Situations</u> : 1. varies directly 2. varies jointly 3. varies inversely (or some combination)	<u>Varies directly</u> can be stated as: directly proportional	Varies inversely can be stated as: inversely proportional

Examples:

Simple interest varies jointly as principal and time \longrightarrow I = kpt (use "I" for Interest, "p" for principal, and "t" for time)

Word Problem:

The weight of an object on Earth varies directly to that same weight on the moon. If a 210 - pound man would weigh 30 pounds on the moon, how much would a 50 - pound child weigh on the moon?

Step 1: $\mathbf{E} = \mathbf{km}$	Use "E" for Earth-weight and "m" for moon-weight.
(210) = k(30)	Plug in 210 for the man's Earth-weight and 30 for his moon-weight.
<u>Step 2</u> : 210 = 30k	Solve for "k″ (divide by 30).
$\frac{210}{30} = \frac{30k}{30}$ k = 7	You will always solve for " k'' first in variation problems, and then plug it back into the formula to solve for the final question (m, in this case).
<u>Step 3</u> : $(50) = (7)m$ $\frac{50}{7} = \frac{7m}{7}$	Using your original formula, $E = k m$, substitute the value 7 for k, and 50 for the child's Earth- weight to solve the child's moon-weight.
m = 7.14	A child on the moon would weigh about 7.14 pounds.

