Three Basic Steps

1. Set up the problem as an equation.
2. Solve for " k ".
3. Substitute the value of " k " into the Step 1 equation to solve for the new "unknown".

Three Basic Situations

varies	varies	varies
directly	jointly	inversely

Something will go either next to "k" . . . or . . . underneath " k "
(indicating multiplication)
(indicating division)

A variation problem can also include a combination of the three situations:

> "w" varies jointly as "x" and "y", and inversely as "z"

Three Steps:

1. Set up an equation
2. Solve for " k "
3. Plug " k " back in

Three Situations:

1. varies directly
2. varies jointly
3. varies inversely (or some combination)

Varies directly
can be stated as:
directly proportional

Varies inversely
can be stated as:
inversely proportional

Examples:

" y " varies directly as the square of " x " $\longrightarrow \mathrm{y}=\mathrm{kx}{ }^{2}$
" n " varies inversely as the square root of " s " $\longrightarrow n=\frac{k}{\sqrt{s}}$
Simple interest varies jointly as principal and time $\longrightarrow \quad \mathrm{I}=\mathrm{kpt}$ (use "I" for Interest, "p" for principal, and "t" for time)

Word Problem:

The weight of an object on Earth varies directly to that same weight on the moon. If a 210 - pound man would weigh 30 pounds on the moon, how much would a 50 - pound child weigh on the moon?

Step 1: $\quad \mathrm{E}=\mathbf{k m}$
(210) $=k(30)$

Step 2: $210=30 \mathrm{k}$

$$
\begin{gathered}
\frac{210}{30}=\frac{30 k}{30} \\
k=7
\end{gathered}
$$

Step 3: $\quad(50)=(7) \mathrm{m}$

$$
\frac{50}{7}=\frac{7 m}{7}
$$

$$
m=7.14
$$

Use "E" for Earth-weight and "m" for moon-weight.

Plug in 210 for the man's Earth-weight and 30 for his moon-weight.

Solve for " k " (divide by 30).

You will always solve for " k " first in variation problems, and then plug it back into the formula to solve for the final question (m, in this case).

Using your original formula, $E=k m$, substitute the value 7 for k, and 50 for the child's Earthweight to solve the child's moon-weight.

A child on the moon would weigh about 7.14 pounds.

