SYSTEMS OF TWO EQUATIONS ** Finding Out How Many Solutions There Are **

Ask, where are the lines touching or meeting?
\qquad
When solving systems of equations, the goal is to determine where the lines meet or touch. In other words, what point or points do the equations have in common?

Three Scenarios:

Intersecting

 Lines
Meeting at one point

Consistent / Independent

One solution
You will get an x-value and a y-value, such as:
$x=-3$ and $y=5$
In other words, an
ordered pair $(-3,5)$

Coinciding
Lines
Meeting at every point
Consistent / Dependent

Infinite solutions
You will get an answer that looks something like:

$$
0=0 \text { or } \mathbf{2}=\mathbf{2}
$$

This makes sense. 0 does equal 0 and 2 does equal 2 .

Parallel
 Lines

Lines that never meet

Inconsistent / Independent

No solution
You will get an answer that makes no sense, such as:

$$
0=4 \text { or }-7=8
$$

(No Sense = No Solution)

What's all this Math vocabulary ?

Consistent or Inconsistent

A system of two equations is consistent if the equations have one or more (or infinite) solutions. The system of equations is inconsistent if the equations have no common solution.

Dependent or Independent

Two equations are dependent if the equations have an infinite number of solutions (they are the same line). The equations are independent if they have one solution or no common solution.

Intersecting, Coinciding or Parallel

Two distinct lines intersect (meet or touch each other) in one point. Coinciding lines intersect at every point, and are they actually the same line. Parallel lines never intersect.

The three examples of equations and graphs below use this vocabulary.

> Example A
> $4 x+y=-13$
> $-3 x+2 y=-4$

One Solution: (-2,-5)
Equations: independent
System: consistent
Lines: intersecting

Example B

$$
2 x-6 y=10
$$

$$
5 x-15 y=25
$$

Infinite \# of solutions Equations: dependent System: consistent Lines: coinciding

Example C
$-2 x-5 y=7$
$-2 x-5 y=-2$
No common solution Equations: independent System: inconsistent Lines: parallel

