Solving a System of Three Equations

with THREE VARIABLES each

$$
\text { Example: } \begin{aligned}
& x+y+z=2 \\
& x-y+2 z=5 \\
& 3 x+2 y-z=3
\end{aligned}
$$

1) Choose two of the 3 equations and add them to eliminate one of the variables...
$x+y+z=2$
$x-y+2 z=5 \quad$ Box the equation
$2 x+3 z=7$
2) Next, choose two other equations

$$
x-y+2 z=5 \xrightarrow{\text { Multiply this by } 2} 2 x-2 y+4 z=10
$$

(a different combination), and eliminate the same variable as

$$
3 x+2 y-z=3
$$

$$
3 x+2 y-z=3
$$ you did in Step 1.

Box this equation also
3) Take the two boxed equations and use them to eliminate another variable.

$$
\begin{aligned}
& \begin{array}{l}
2 x+3 z=7 \\
5 x+3 z=13
\end{array} \begin{array}{r}
2 x+3 / z=7 \\
\text { Multiply this by }-1 \\
-5 x-3 z=-13 \\
-3 x \\
=-6
\end{array} \\
& x=2
\end{aligned}
$$

4) Now that you found x, plug it back into one of the boxed equations to find another variable...

$$
5 x+3 z=13
$$

$$
5(2)+3 z=13
$$

$3 z=3$
$z=1$
5) Plug the x and z into one of the original equations to find the last variable.

We find that $\mathrm{x}=2, \mathrm{y}=-1$, and $\mathrm{z}=1$.

Solution: (2, -1, 1)

Solving a System of Three Equations

with a MISSING VARIABLE

> Example: $a+b+c=6$ $a-b+2 c=5$
> $-a-c=-4$

1. Choose the two equations that contain the variable that is missing from the third equation, and eliminate that variable from those two equations.
2. Take the result from step 1 and pair it with the original equation that was missing a variable. Eliminate another variable...
$a+b+c=6$
$a-b+2 c=5$
$2 a+3 c=11$
$2 a+3 c=11$
$-\mathrm{a}-\mathrm{c}=-4$

3. Now that you found the value of a, plug it into one of the two-variable equations and solve for another variable...

4. Plug the a and c into one of the original equations to find the last variable.

We find that $\mathrm{a}=1, \mathrm{~b}=2$, and $\mathrm{c}=3$.

Solution: (1, 2, 3)

