

Solving a System of Three Equations

with THREE VARIABLES each

Example:
$$x + y + z = 2$$

 $x - y + 2z = 5$
 $3x + 2y - z = 3$

1) Choose two of the 3 equations and add them to eliminate <u>one</u> of the variables...

$$x + y + z = 2$$

$$x - y + 2z = 5$$

$$2x + 3z = 7$$

Box the equation

$$2x + 3z = 7$$

2) Next, choose two other equations (a different combination), and eliminate the <u>same</u> variable as you did in Step 1.

$$x - y + 2z = 5$$
 $3x + 2y - z = 3$
 $3x + 2y - z = 3$
 $5x + 3z = 13$

Box this equation also

3) Take the two <u>boxed</u> equations and use them to eliminate another variable.

$$2x + 3z = 7$$

 $5x + 3z = 13$
Multiply this by -1
$$2x + 3z = 7$$

$$-5x - 3z = -13$$

$$-3x = -6$$

$$x = 2$$

4) Now that you found x, plug it back into one of the boxed equations to find another variable...

$$5x + 3z = 13$$

 $5(2) + 3z = 13$
 $3z = 3$
 $z = 1$

5) Plug the x and z into one of the <u>original</u> equations to find the last variable.

$$x + y + z = 2$$

 $2 + y + 1 = 2$
 $y + 3 = 2$
 $y = -1$

We find that x = 2, y = -1, and z = 1.

Solution: (2, -1, 1)

Solving a System of Three Equations

with a MISSING VARIABLE

Example:
$$a + b + c = 6$$

 $a - b + 2c = 5$
 $-a - c = -4$

 Choose the two equations that contain the variable that is missing from the third equation, and eliminate that variable from those two equations.

$$a + b + c = 6$$

 $a - b + 2c = 5$
 $2a + 3c = 11$

2. Take the result from step 1 and pair it with the original equation that was missing a variable. Eliminate another variable...

$$2a + 3c = 11$$

$$-a - c = -4$$

$$-3a$$

$$2a + 3c = 11$$

$$-3a$$

$$2a + 3c$$

$$2a +$$

3. Now that you found the value of a, plug it into one of the two-variable equations and solve for another variable...

$$-a-c = -4$$

$$-1-c = -4$$

$$-c = -4$$

$$-c = -3$$

$$-c = 3$$

4. Plug the a and c into one of the <u>original</u> equations to find the last variable.

We find that
$$a = 1$$
, $b = 2$, and $c = 3$.

$$a + b + c = 6$$

 $1 + b + 3 = 6$
 $b + 4 = 6$
 $b = 2$

Solution: (1, 2, 3)