Scientific Notation

Sometimes, you may come up with a very long number. It might be a big number, like $4,895,000,000$ or it might be a small number, like 0.0000073 .

Scientific Notation is a used to make these numbers easier to work with. Scientific Notation for a number is expressed as $M \times 10^{n}$.

In this expression " n " is an integer, and " M " is a number greater than or equal to 1 and less than 10. M is expressed in decimal notation (only one digit in front of the decimal point).

Example 1: Convert 4,895,000,000 to Scientific Notation.
Steps to conversion

- Remember that any whole number can be written with a decimal point. For example: 4,895,000,000 $=4,895,000,000.0$
- The decimal place is moved to the left until you have a number between 1 and 10.
- In this example the decimal point was moved nine places to the left to achieve 4.895.
- The fact that the decimal was moved 9 places to the left is balanced by applying a multiple of 10^{9}.
$4.895 \times 10^{9}=4.895 \times 10 \times 10=4,895,000,000$
Scientific Notation can also be used to turn 0.0000073 into 7.3×10^{-6}.
Example 2: Convert 0.0000073 to Scientific notation.
Steps to conversion
- First, move the decimal place until you have a number between 1 and 10. If you keep moving the decimal point to the right in 0.0000073 you will get 7.3.
- Next, count how many places you moved the decimal point. You had to move it 6 places to the right to change 0.0000073 to 7.3 . You can show that you moved it 6 places to the right by noting that the number should be multiplied by 10^{-6}.
$7.3 \times 10^{-6}=0.0000073$

Remember:

In a power of ten, the exponent - the small number above and to the right of the 10 tells which way you moved the decimal point.

- A power of ten with a positive exponent, such as 10^{5}, means the decimal was moved to the left. The original number had at least one non-zero digit in front of the decimal point.
- A power of ten with a negative exponent, such as 10^{-5}, means the decimal was moved to the right. The original number had no non-zero digits in front of the decimal point.

