Perfect Trinomial Squares Difference of Squares
 Difference of Cubes Sum of Cubes

Once recognized, these special polynomials are very easily factored.
Perfect Trinomial Squares - Three terms with perfect squares on each end and a positive sign in the middle will always have two exact factors.

There is a perfect square $\longrightarrow \quad X^{2}+\mathbf{6 x + 9} \quad \longleftarrow$ There is a perfect square on this on this end: $x \cdot x=x^{2}$

Place an x and a 3 in each set of parentheses. In this case, both signs are positive:

$$
=(x+3)(x+3) \text { or }(x+3)^{2}
$$

Difference of Squares - Two terms with perfect squares on each end and a minus sign in the middle will always have two opposite factors.

There is a perfect square $\rightarrow \quad \mathbf{x}^{2} \mathbf{- 4} \quad \leftarrow$ There is a perfect square on this on this end: $x \cdot x=x^{2}$

There is a minus sign in the middle
Place an x and 22 in each set of parentheses. One will be neqative and the other positive:

$$
=(x-2)(x+2)
$$

Difference of Cubes

Two terms with perfect cubes on each end and a minus sign in the middle: ($x^{3}-125$)

Sum of Cubes

Two terms with perfect cubes on each end and a plus sign in the middle: $\left(x^{3}+64\right)$

Both difference and sum of cubes can be factored using the same steps. The following example will demonstrate how this is done.

5. To get the middle term, multiply the two terms in the small parentheses, and then change the

$$
(x+4)\left(x^{2}-4 x+16\right)
$$

$(x-5)\left(X^{2}+5 x+25\right)$
$\frac{\text { sign: }}{x \cdot(-5)=-5 x \Rightarrow+5 x}$
$x \cdot(+4)=+4 x \Rightarrow-4 x$

