WHAT IS THE SLOPE OF A LINE?

The slope of a line is a measure of how much the line slants and in which direction it is slanting. The letter " m " is used to designate slope, and we assume all lines enter the graph from the left.

$$
m=2
$$

(Line slants up to the right, so the slope is positive)

$\mathrm{m}=-\mathbf{0 . 8}$
(Line slants down to the right, sothe slope is negative)

$\mathrm{m}=0$
(Line slants neither up nor down, so the slope is zero)

Horizontal lines always have a slope of zero.

$\mathrm{m}=$ undefined
(the slope is undefined)
Vertical lines have slopes that are undefined.

Think of ski slopes to help understand the slope of a line:

Positive Slope
(Skiing up)

Negative Slope
(Skiing down)

Zero Slope
(Skiing horizontally)

Undefined Slope

(Skiing vertically is impossible, thus, "undefined")

THREE WAYS TO FIND SLOPE

A line consists of two or more points, and in the $x-y$ coordinate plane, the slope of a line is a ratio of the difference in the y values to the difference in the x values of two points. The difference in y values is called "rise", and the difference in x values is the "run". We use the letter " m " for slope; if the coordinates of the two points are (x_{1}, y_{1}) and (x_{2}, y_{2}), then the slope (m) $=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Given Two Points

Use the Slope Formula:
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Example
$(1,-4)$ and $(-2,3)$

First label the x and y coordinates and then plug them into the slope formula:

$$
\begin{gathered}
\begin{array}{c}
(1,-4) \\
\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)
\end{array} \quad \begin{array}{c}
(-2,3) \\
\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)
\end{array} \\
\mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}} \\
\mathrm{~m}=\frac{3-(-4)}{-2-1}=\frac{7}{-3}
\end{gathered}
$$

Slope is the rise divided by the run; the rise $=7$ and the run $=-3$, so slope

$$
m=\frac{\text { rise }}{\text { run }}=\frac{7}{-3}=-\frac{7}{3}
$$

Given an Equation

Put equation into slope-intercept form:

$$
y=m x+b
$$

Example

$$
3 x-y=5
$$

Change the equation into the slopeintercept form, $y=m x+b$, so it will be easy to identify the slope (m) and the y-intercept (b).

Add $-3 x$ to both sides of the equation

$$
-y=-3 x+5
$$

Divide both sides of the equation by -1

$$
\begin{gathered}
\frac{-y}{-1}=\frac{-3 x}{-1}+\frac{5}{-1} \\
y=3 x-5
\end{gathered}
$$

The coefficient of x is the slope of the line, or m. In rise and run terms, the rise is 3 and the run is $1 .(3=3 / 1)$

The slope is 3 and the y-intercept is -5

Given a Graph

Count from one point on the line to another, using the Rise and the Run.

Example

Using the graph below -

Count from one point to the next: go down 2 units, then go to the right 1 unit.

DOWN is a negative rise. RIGHT is a positive run. The rise over the run is (-2) over (+1); therefore, the slope is -2 .

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{-2}{1}=-2
$$

