

Choosing a Factoring Method

When presented with a polynomial to factor, first determine which method to use. There are several types of polynomials, each requiring its own factoring method.

The following steps will help you make that determination.

<u>Step 1</u>: Always check first for a <u>*Greatest Common Factor*</u> (GCF). If there is a **GCF**, then divide it out of each of the terms in the polynomial.

Examples:

2x + 6	y² - 8y	$3z^3 + 24$
2 (x + 3)	y (y – 8)	3 (Z ³ + 8)
9t ² + 12t -18 3 (3t ² + 4t - 6)	4x ² - 16 4 (x ² - 4)	a ² b - a ³ b ² + ab ² ab (a - a ² b + b)

- **Step 2:** After factoring out the Greatest Common Factor (if one exists), try to factor further. Start by counting the number of terms.
 - 1. If there are two terms:
 - Try factoring as a <u>Difference of Squares</u>
 Example: x² 4 = (x 2)(x + 2)
 - Is it a Sum of Squares?

Example: $x^2 + 4 = prime$, cannot be factored

• Try factoring as a <u>Sum or Difference of Cubes</u>

Sum of Cubes: $z^3 + 8 = (z + 2) (z^2 - 2z + 4)$ Difference of Cubes: $z^3 - 8 = (z - 2) (z^2 + 2z + 4)$

• Try using the <u>Square Root Property</u>

(See handout #81 located on our math carousel)

NOTE: The purpose of this handout is to help students determine the most effective method to factor a polynomial. It is a guide. For specific steps using any of these methods, refer to our handouts or ask a tutor or a learning specialist for assistance.

Choosing a Factoring Method

Step 3: If there are three terms:

- Try factoring as a <u>Perfect Square Trinomial</u>
 EXAMPLE: 4x² + 12x + 9 = (2x + 3)(2x + 3) = (2x + 3)²
- Try factoring by <u>Trial and Error</u> This method is best used for trinomials with a leading coefficient of 1.
 EXAMPLE: 1x² + 3x - 10 or x² + 3x - 10 = (x + 5)(x - 2)
- Try using the <u>AC Method</u>

This method is especially useful when the leading coefficient is a number larger than 1.

EXAMPLE: $18x^2 + 5x - 2 = (9x - 2)(2x + 1)$

In MAT1033 and beyond, use the <u>Quadratic Formula</u>, the <u>Completing the Square</u> method, or the <u>Square Root Property</u> to solve prime (unfactorable) quadratic equations. For more information, please refer to ASC handouts #23 and #24.

Step 4: If there are four terms:

- Try using <u>Two by Two Grouping</u> Example: a - a² b + b - ab² → a²b - a - ab² + b = a(ab - 1) - b(ab - 1) = (ab - 1) (a - b)
- Try using <u>Three by One Grouping</u> Example:

