Compound Interest

Compound Interest is one method of computing interest. Using this method, interest is computed from the up-to-date balance. That is, interest is earned on the interest and original balance not just on the original balance.

Five things are needed to calculate compound interest:

1) Principal $(\mathrm{P})=$ the amount put into the bank or the amount borrowed from the bank
2) Rate (r) = the percent per year
3) Number of periods per year (n) = [daily (365), weekly (52), monthly (12), quarterly (4), semi-annually (2), or annually (1)].
4) Time (t) = how many years the money is in the savings account at the bank or how many years it will take you to pay back the loan.
5) Final Amount $(\mathrm{A})=$ Principal + compound Interest

The formula for calculating Compounded Interest is:

$$
\mathbf{A}=\text { Principal }\left(1+\frac{\text { rate }}{\text { number of periods }}\right)^{\text {number of periods xtime }} \quad \text { or } \mathbf{A}=\mathbf{P}\left(1+\frac{r}{n}\right)^{n t}
$$

The tricky part about calculating the number of periods in a year.

Example 1:

Ray put $\mathbf{\$ 2 , 0 0 0}$ into a savings account. The interest on the account is $\mathbf{1 2 \%}$ per year compounded quarterly. He wants to put the money away for 7 years.
Using the compound interest method, how much will Ray have at the end of that time period?
Principal $=\$ 2000 \quad$ Rate $=12 \%=0.12 \quad$ Number of Periods $=4 \quad$ Time $=7$
$\mathbf{A}=\mathbf{P}\left(1+\frac{r}{n}\right)^{n t}=2000\left(1+\frac{0.12}{4}\right)^{4 x 7}=2000(1.03)^{28}=\$ 4,575.86$
To determine how much Compound Interest was accumulated, we have to subtract the Principal from the final Amount.
Amount - Principal $=$ Compound Interest
$\mathrm{A}-\mathrm{P}=\mathrm{CI}$
$\$ 4,575.86-\$ 2000=\$ 2,575.86$

Compound Interest (continued)

Example 2:

An individual has $\$ 1000.00$ to invest for 3 years at rate of 5% annual compound interest. How much is the investment worth at the end of 3 years?

Principal $=\$ 1000 \quad$ Rate $=5 \%=0.05 \quad$ Number of Periods $=1 \quad$ Time $=3$
$\mathbf{A}=\mathbf{P}\left(1+\frac{r}{n}\right)^{n t}=1000\left(1+\frac{0.05}{1}\right)^{1 \times 3}=1000(1.05)^{3}=\$ 1,157.63$
To determine how much Compound Interest was accumulated, we have to subtract the Principal from the final Amount.

Amount - Principal $=$ Compound Interest
$\mathrm{A}-\mathrm{P}=\mathrm{CI}$
$\$ 1,157.63-\$ 1000=\$ 157.63$

Example 3:

To buy a computer, Tom borrowed $\$ 3000$ at $\mathbf{6 \%}$ compound interest calculated quarterly. Calculate:
a. The total amount to be paid back.
b. The amount of compound interest paid over the 4 years.
a. Using compound interest method:

Principal $=\$ 3000 \quad$ Rate $=6 \%=0.06 \quad$ Number of Periods $=4 \quad$ Time $=4$
$\mathbf{A}=\mathbf{P}\left(1+\frac{r}{n}\right)^{n t}=3000\left(1+\frac{0.06}{4}\right)^{4 \times 4}=3000(1.015)^{16}=\$ \mathbf{3 , 8 0 6 . 9 6}$
b. To determine how much Compound Interest was accumulated, we have to subtract the Principal from the final Amount.
Amount - Principal $=$ Compound Interest
$\mathrm{A}-\mathrm{P}=\mathrm{CI}$
$\$ 3,806.96-\$ 3000=\$ 806.96$

