Solving Systems of 3 Equations using row-echelon form

Begin with a
System of 3 Equations
$x-3 y+2 z=9$
$2 x+5 y-z=-10$
$-3 x+y-4 z=-5$

Put coefficients in an augmented matrix.

1	-3	2	9
2	5	-1	-10
-3	1	-4	-5

Use row operations to get into row-echelon form.

Turn these into zeros

Turn these into ones

Row operations involve adding, subtracting, multiplying or dividing to change the entries in the row.

Begin by taking 2 times Row 1 and subtracting Row 2, creating a new Row 2

Use Row 1 again. Add 3 times the entries in Row 1 to Row 3, creating a new Row 3

Take the new R_{2} and new R_{3} and write out the new matrix.

1	-3	2	9
0	-11	5	28
0	-8	2	22

Divide R_{2} to get a ' 1 ' in the second column of that row.

| $R_{2} \div-11 \rightarrow R_{2}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $R_{2} /-11$ | $\frac{0}{-11}$ | $\frac{-11}{-11}$ | $\frac{5}{-11}$ | $\frac{28}{-11}$ |
| New R_{2} | 0 | 1 | $-5 / 11$ | $-28 / 11$ |

Write out the new matrix, noting R_{3} needs changes.

1	-3	2	9
0	1	$-\frac{5}{11}$	$-\frac{28}{11}$
0	-8	2	22

Add 8 times the entries in Row 2 to Row 3, creating a new Row 3.

$8 R_{2}+R_{3} \rightarrow R_{3}$				
$8 R_{2}$	0	8	$-40 / 11$	$-224 / 11$
$+R_{3}$	0	-8	2	22
New R_{3}	0	0	$-18 / 11$	$18 / 11$

Write out the matrix with the new Row 3.

1	-3	2	9
0	1	$-\frac{5}{11}$	$-\frac{28}{11}$
0	0	$-\frac{18}{11}$	$\frac{18}{11}$

Multiply R_{3} to get a ' 1 ' in the third column of that row.

$R_{3} \times-11 / 18 \rightarrow R_{3}$				
$R_{3} \times-\frac{11}{18}$	0	0	$-\frac{18}{11}\left(\frac{-11}{18}\right)$	$\frac{18}{11}\left(\frac{-11}{18}\right)$
$N_{\text {New }} R_{3}$	0	0	1	-1

ACADEMIC SUPPORT CENTER

Solving Systems of 3 Equations using row-echelon form

Now the matrix is in row-echelon form, with zeros and ones where they should be.

1	-3	2	9
0	1	$-\frac{5}{11}$	$-\frac{28}{11}$
0	0	1	-1

Convert the matrix back into equations with variables.

$$
\begin{aligned}
& x-3 y+2 z=9 \\
& 0 x+y-\frac{5}{11} z=-\frac{28}{11} \\
& 0 x+0 y+z=-1
\end{aligned}
$$

Use the third equation result to substitute in the second equation and solve for y. Use the y and z values and substitute in the first equation to solve for x .

$$
\begin{array}{ll}
z=-1 & z=-1 \text { and } y=-3 \\
\text { (Second Equation) } & \\
y-\frac{5}{11} z=-\frac{28}{11} & x-3 y+2 z=9 \\
y-\frac{5}{11}(-1)=-\frac{28}{11} & x-3(-3)+2(-1)=9 \\
y+\frac{5}{11}=-\frac{28}{11} & x+9-2=9 \\
y=-\frac{33}{11}=-3 & x=2
\end{array}
$$

$$
\text { Solution: } X=2, Y=-3, Z=-1
$$

You can check your solution by plugging the coordinates $(2,-3,-1)$ into the original equations:
$x-3 y+2 z=9$
$2 x+5 y-z=-10$
$-3 x+y-4 z=-5$
$2-3(-3)+2(-1)=9$
$2(2)+5(-3)-(-1)=-10$
$-3(2)+(-3)-4(-1)=-5$
$2+9-2=9$
$4+(-15)+1=-10$
$-6+(-3)+4=-5$
$9=9$
$-10=-10$
$-5=-5$

The Gauss-Jordan method involves a little more work with matrices, but the results should be the same. Use row operations to convert the initial augmented matrix into a matrix with ones on the diagonal and zeros elsewhere (except in the solutions column), as shown below.

1	-3	2	9						
2	5	-1	-10						
-3	1	-4	-5		1	0	0	2	
:---	:---	:---	:---	:---	:---				
0	1	0	-3						
0	0	1	which means	$x+0 y+0 z=2$ $0 x+y+0 z=-3$					
$0 x+0 y+z=-1$									

