

Solving Systems of 3 Equations using row-echelon form

Begin with a System of 3 Equations	Put o augr	coeffici nentec	ients ir 1 matri	n an x.	Use row operations to get into row-echelon form.
x - 3y + 2z = 9	1	-3	2	9	1 -3 2 9
2x + 5y - z = -10	2	5	-1	-10	2 5 -1 -10
-3x + y - 4z = -5	-3	1	-4	-5	-3 1 -4 -5
					Turn these Turn these

Row operations involve adding,	subtracting,	multiplying or	dividing to	change the entries in the ro	w.
--------------------------------	--------------	----------------	-------------	------------------------------	----

Begin by taking 2 times Row 1 and
subtracting Row 2, creating a new Row 2

$2R_1 \ -R_2 \ \rightarrow R_2$						
$2R_1$	2	-6	4	18		
-R2	-2	-5	+1	+10		
New R	2 0	-11	5	28		

Use Row 1 again. Add 3 t	times the entries
in Row 1 to Row 3, creat	ing a new Row 3

into zeros

	31	$R_1 + R_2$	$_3 \rightarrow F$	3	
$3R_1$	3	-9	6	27	
+R₃	-3	+1	-4	-5	
New R	l3 0	-8	2	22	

Take the new R_2 and new R_3 and write out the new matrix.

1	-3	2	9	
0	-11	5	28	
0	-8	2	22	

Divide I	R ₂ to get a '1' in the	
second	column of that row.	

$R_2 \div -11 \rightarrow R_2$						
R ₂ /-11	$\frac{0}{-11}$	<u>-11</u> -11	<u>5</u> -11	28 -11		
New R_2	0	1	-5/11	-28/11		

Write out the new matrix, noting R_3 needs changes.

into ones

1	-3	2	9
0	1	$-\frac{5}{11}$	$-\frac{28}{11}$
0	-8	2	22

Add 8 times the entries in Row 2 to Row 3, creating a new Row 3.

$8R_2 + R_3 \rightarrow R_3$						
8R2	0	8	-40/11	-224/11		
+R₃	0	-8	2	22		
New R	l₃ 0	0	-18/11	18/11		

Write out the matrix with the new Row 3.

1	-3	2	9
0	1	$-\frac{5}{11}$	$-\frac{28}{11}$
0	0	$-\frac{18}{11}$	$\frac{18}{11}$

Multiply R_3 to get a '1' in the third column of that row.

$R_3 \ \times \ \text{-}11/18 \ \rightarrow R_3$						
$R_3 \times \frac{11}{18}$	0	0	$-\frac{18}{11}\left(\frac{-11}{18}\right)$	$\frac{18}{11} \left(\frac{-11}{18} \right)$		
New R ₃	0	0	1	-1		

E-mail: ASC@DaytonaState.edu • Phone: (386) 506-3673 ona State College assures equal opportunity in employment and education services to all individuals without and to race, sec, color, age, religion, disability, national origin, political affiliation or belief, or maintal status.

Solving Systems of 3 Equations using row-echelon form

Now the matrix is in row-echelon form, with zeros and ones where they should be.

1	-3	2	9	
0	1	$-\frac{5}{11}$	$-\frac{28}{11}$	
0	0	1	-1	

Convert the matrix back into equations with variables.

x - 3y + 2z = 9 $0x + y - \frac{5}{11}z = -\frac{28}{11}$ 0x + 0y + z = -1

Use the third equation result to substitute in the second equation and solve for y. Use the y and z values and substitute in the first equation to solve for x.

z = -1	z = -1 and $y = -3$
(Second Equation) y $-\frac{5}{11}Z = -\frac{28}{11}$	(First Equation) x - 3y + 2z = 9
$y - \frac{5}{11}(-1) = -\frac{28}{11}$	x - 3 (-3) + 2 (-1) = 9
$y + \frac{5}{11} = -\frac{28}{11}$	x + 9 - 2 = 9
$y = -\frac{33}{11} = -3$	x = 2

Solution: X = 2, Y = -3, Z = -1

You can check your solution by plugging the coordinates (2, -3, -1) into the original equations:

x - 3y + 2z = 9	2x + 5y - z = -10	-3x + y - 4z = -5
2 – 3 (-3) + 2 (-1) = 9	2 (2) + 5 (-3) - (-1) = -10	-3(2) + (-3) - 4(-1) = -5
2 + 9 - 2 = 9	4 + (-15) + 1 = -10	-6 + (-3) + 4 = -5
9 = 9	-10 = -10	-5 = -5

The Gauss-Jordan method involves a little more work with matrices, but the results should be the same. Use row operations to convert the initial augmented matrix into a matrix with ones on the diagonal and zeros elsewhere (except in the solutions column), as shown below.

1	-3	2	9	1	0	0	2	x + 0y + 0z = 2
2	5	-1	-10	 0	1	0	-3 which means	0x + y + 0z = -3
-3	1	-4	-5	0	0	1	-1	0x + 0y + z = -1

DaytonaState.edu/ASC E-mail: ASC@DaytonaState.edu • Phone: (386) 506-3673